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We propose preconditioning as a viable acceleration scheme for the inner iterations
of transport calculations in slab geometry. In particular we develop Adjacent-Cell
Preconditioners (AP) that have the same coupling stencil as cell-centered diffusion
schemes. For lowest order methods, e.g., Diamond Difference, Step, and 0-order
Nodal Integral Method (0NIM), cast in a Weighted Diamond Difference (WDD)
form, we derive AP for thick (KAP) and thin (NAP) cells that for model problems
are unconditionally stable and efficient. For the First-Order Nodal Integral Method
(1NIM) we derive a NAP that possesses similarly excellent spectral properties for
model problems. [Note that the order of NIM refers to the truncated order of the
local expansion of the cell and edge fluxes in Legendre series.] The two most attrac-
tive features of our new technique are: (1) its cell-centered coupling stencil, which
makes it more adequate for extension to multidimensional, higher order situations
than the standard edge-centered or point-centered Diffusion Synthetic Acceleration
(DSA) methods; and (2) its decreasing spectral radius with increasing cell thickness
to the extent that immediate pointwise convergence, i.e., in one iteration, can be
achieved for problems with sufficiently thick cells. We implemented these methods,
augmented with appropriate boundary conditions and mixing formulas for material
heterogeneities, in the test code AP1D that we use to successfully verify the analytical
spectral properties for homogeneous problems. Furthermore, we conduct numerical
tests to demonstrate the robustness of the KAP and NAP in the presence of sharp
mesh or material discontinuities. We show that the AP for WDD is highly resilient to
such discontinuities, but for 1NIM a few cases occur in which the scheme does not
converge; however, when it converges, AP greatly reduces the number of iterations
required to achieve convergence.

Key Words:preconditioning; adjacent-cell preconditioner; neutral particle trans-
port; spectral analysis.
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I. INTRODUCTION

The slow convergence of Source Iterations (SI) traditionally employed in solving neutral
particle (neutrons and photons) transport problems in the diffusive regime prompted the
search for efficient acceleration schemes. Among these, the Diffusion Synthetic Acceler-
ation (DSA) method was initially attractive because it was believed that standard, highly
efficient, cell-centered codes based on diffusion theory could be attached simply as an accel-
eration module toanytransport code. It was not long until this plan, not DSA per se, failed
in some cases [1], in fact primarily the cases most in need of acceleration in the first place.
The conditional stability of DSA for accelerating the Diamond Difference (DD) method, the
dominant method of the time, was proved through the analysis by Reed of a model configura-
tion, i.e., an infinite row of identical cells [1]. This behavior was later articulated inAlcouffe’s
Consistency Principle, which states that a necessary condition for stability and efficiency of
a DSA scheme is theconsistencybetween the discrete-variable forms of the diffusion and
transport operators involved [2]. However, the nature of this consistency, and a systematic
approach to deriving the discrete-variable DSA equations remained unspecified until Larsen
interpreted consistency in thederivationalsense and prescribed the Four Step Method (FSM)
as a means of deriving an unconditionally stable and efficient DSA [3]. He demonstrated
FSM for several spatial approximations in slab geometry [3]; then McCoy and Larsen
verified the predicted spectral properties for model, as well as non-model, problems [4].

Research into acceleration methods has not ceased since then and has been motivated
primarily by the following considerations:

1. The difficulty of the FSM–DSA formalism, which inhibits its extension to multidi-
mensional or non-Cartesian geometries, higher order methods, and alternative discretization
schemes, e.g., the nodal and characteristic methods. Over the years many authors have in-
troduced simplifying assumptions to overcome this obstacle, achieving varying degrees of
success.

2. A nonstandard edge-centered form of the FSM–DSA acceleration equation, which in
multidimensional cases requires solving a discrete-variable problem larger than that solved
by cell-centered schemes that have been studied, analyzed, and tested more comprehen-
sively.

3. The potential for achieving spectral properties better than those achieved by the FSM–
DSA.

A cell-centered scheme, which resembles to a large extent a DSA method, was proposed
and successfully tested by Gelbard and Khalil for DD in slab geometry [5]. Later Khalil
[6] formulated a Consistent Diffusion Differencing (CDD) acceleration technique that he
showed is equivalent to FSM–DSA withS2 angular quadrature in slab geometry, then
proceeded to illustrate that it can be written in a cell-centered form. However, extension
of CDD to multidimensional geometry requires simultaneously solving for the transverse-
leakage discrete variables which are defined on cell edges. More recently, in an effort to
better understand Reed’s results, the Imposed DSA (IDSA) scheme was reported [7]. In
this method a cell-centered diffusion equation with an arbitrary diffusion length isimposed
to accelerate the 1D Weighted Diamond Difference (WDD) discrete ordinates form of the
transport equation. [The WDD includes as special cases several standard methods, such as
DD, the Step method, and the Zero-Order Nodal Integral Method (0NIM) [8], characterized
by a single spatial parameter; the order of NIM specifies the order of the truncated Legendre
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expansion of the flux as detailed in Ref. [8].] Spectral analysis of the resulting accelerated
iterative process yielded the spectral radius as a function of the diffusion length and the
computational cell optical thickness, for various values of the WDD spatial weights [7]. The
results of this work showed that Reed’s conclusion [1] regarding the failure of cell-centered
schemes to accelerate thick-cell problems is strictly true for the DD method used in his
analysis, but that it does not hold for large-weight WDD methods, such as Step, and also
0NIM.

The IDSA essentially legitimized the search for acceleration operators of the cell-centered
diffusive type to implement with non-DD discretizations of the transport equation. In this
paper we present a new approach for accelerating iterative convergence of WDD and the
linear method, 1NIM [8], in slab geometry that is based on traditional preconditioning
studied as a general framework in developing iterative methods for solving large problems
in linear algebra [9, 10]. In contrast to the IDSA [7], here we start by considering a class
of cell-centered preconditioner coupling stencils, then show that a generalized diffusion
relation among the elements of the preconditioner with adjacent-cell coupling is necessary
for the stability of the iterative scheme. Thus, in Section II we examine the case of WDD,
a zero-order class of methods, in great detail, deriving and verifying Adjacent-Cell Pre-
conditioners (AP) that are unconditionally stable, and whose spectral radii decrease to zero
with increasing cell thickness. Due to the complexity of the first-order case, in Section III
we briefly describe AP for thick cells, then examine in detail only the AP for thin cells and
1NIM, which has spectral properties that are as desirable as those of the WDD scheme. The
spectral analyses conducted in Sections II and III are based on decomposing the iteration
residual into Fourier modes for model problem configurations characterized by an infinite
row of equal-sized computational cells with homogeneous material composition. Realistic
problems of non-periodic finite extent and material heterogeneities do not permit a Fourier
analysis; however, we extend the AP formalism to such cases by applying standard formulas
for vacuum boundary conditions, and for mixing the preconditioner elements across mesh
and material discontinuities. Numerical tests conducted with the slab geometry computer
code AP1D are included in both Section II and Section III to verify this extension of the
spectral analysis results, and to facilitate examination of the effect of material and mesh
discontinuities on the efficiency of the AP. A brief summary of this work and our main
conclusions are included in Section IV.

II. ACCELERATION OF THE WDD

The most general form of the WDD form of the one-group, steady state, discrete ordinates
approximation of the neutron transport equation in slab geometry comprises two sets of
relations. The first set is a per cell statement of balance of sources andsinksof neutrons

εn, j
[
ψ̃

o,l ′
n, j − ψ̃ i,l ′

n, j

]+ ψ̃ l ′
n, j = cj φ̃

l
j + sj , n = 1, . . . , N; j = 1, . . . , J, (1.a)

wherel and l ′ denote the previous and present inner iterations, respectively;ψ̃ l ′
n, j is the

present iterate of thenth angular flux averaged over cellj ; ψ̃o,l ′
n, j andψ̃ i,l ′

n, j are the present
iterates of thenth angular flux evaluated at the outgoing and incoming edges of cellj ,
respectively;φ̃l

j is the previous iterate of the scalar flux averaged over cellj ; sj is the fixed
source averaged over cellj ; the reciprocal of half the optical thickness of cellj is defined
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as

εn, j ≡ 2|µn|
σ j aj
; (1.b)

µn is thenth discrete direction;σ j is the macroscopic total cross section in cellj ; aj is the
size of cell j ; andcj is the scattering ratio in cellj . Equation (1.a) is exact in the sense that
it is obtained by direct integration of the continuum transport equation and using standard
definitions of the cell-average flux and source. The terms on the left hand side of Eq. (1)
represent the loss of neutrons from cellj by streaming, and collisions, while the terms on
the right hand side (RHS) represent the sources from isotropic scattering, and external fixed
sources, respectively.

The second set of equations in a generic WDD form of the discrete-variable transport
equation provides an additional weighted-difference relation between the cell-average and
cell-edge flux variables

ψ̃
l ′
n, j =

(
1+ αn, j

2

)
ψ̃

o,l ′
n, j +

(
1− αn, j

2

)
ψ̃

i,l ′
n, j , n = 1, . . . , N; j = 1, . . . , J. (2)

The dependence of the spatial weightsαn, j ∈ [0, 1] on problem parameters is determined
by the formalism of the underlying numerical method or simplifying assumptions applied
directly to Eq. (2). For example, DD corresponds to

αn, j = 0, (3.a)

equivalent to expanding the flux within cellj in a Legendre series truncated at order two.
The Step method assumes a thick cell where the exponential decay of the incoming cell-edge
flux causes it to dominate the cell-average flux, hence

αn, j = 1. (3.b)

The 0NIM is the lowest order member of a class of methods whose order denotes the
truncation order of Legendre expansions of the flux within each cell, and in multidimensional
cases on cell edges also [8]. The spatial weights for the 0NIM are given by [8]

αn, j = coth(1/εn, j )− εn, j . (3.c)

Solving Eqs. (1.a) and (2) for a given cell-average scalar flux, i.e., initial guess or previous
iterate, along one discrete ordinate over the entire mesh is typically conducted via the “mesh-
sweep” algorithm, which amounts to the following. The starting cell for each angleµn is
one with an external boundary where the incoming flux is explicitly (e.g., vacuum boundary
condition) or implicitly specified in terms of the outgoing flux at this boundary (reflective,
albedo, or periodic boundary conditions). The incoming flux in Eqs. (1.a) and (2) is set to the
prescribed value if an explicit boundary condition is specified, or to a previously computed
outgoing flux otherwise, i.e., mesh sweep along−µn or previous iterate when iterations
on the boundary condition are necessary. The mesh sweep then proceeds by recursively
solving Eqs. (1.a) and (2) simultaneously for the cell-average flux and outgoing cell-edge
flux, assigning the latter to the incoming cell-edge flux of the adjacent down-stream cell
(angular flux continuity across cell edges) and repeating the process. Upon completion of
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the mesh sweep for all discrete ordinates the scalar flux is updated as described shortly and
convergence is tested; this constitutes a single inner iteration.

For the purpose of the ensuing spectral analysis it is convenient to write the equations for
the WDD in homogeneous form by subtracting the set of equations in two consecutive iter-
ations, thus eliminating the fixed source,sj , and replacing the dependent discrete variables
by their iterative residual counterparts. Accordingly, the most general WDD form of the
discrete-ordinates approximation to the transport equation can be written in matrix form,

T0
n, j

[
ψ l ′

n, j , ψ
o,l ′
n, j

]T = S0
n, j

[
φl

j , ψ
i,l ′
n, j

]T
, n = 1, . . . , N; j = 1, . . . , J, (4)

where, for exampleψ l ′
n, j ≡ ψ̃ l ′

n, j − ψ̃ l ′−1
n, j is the mesh-sweep residual in thenth angular flux

averaged over cellj , and so on. The superscript on the matrices in Eq. (4) denotes the lowest
order WDD method; it follows directly from Eqs. (1.a) and (2) that

T0
n, j ≡

1 εn, j

2

1 − 1+αn, j

2

 , (5.a)

S0
n, j ≡

cj
εn, j

2

0 1−αn, j

2

 , (5.b)

Closure of the iterative process represented in Eq. (4) by the indicesl andl ′ is accom-
plished in the SI scheme by setting

φl+1
j = φl ′

j =
N∑

n=1

wnψ
l ′
n, j , (6)

wherewn are the weights associated with the angular quadrature. Acceleration schemes aim
at replacing Eq. (6) with an alternative updating formula that results in faster convergence.
We start this section with a brief outline of the preconditioning method as it applies to
neutral particle transport methods in general, and justify the diffusion coupling stencil for
the preconditioner. Then we devise prescriptions for the preconditioner parameters for thin
and thick computational cells separately, and following this we give formulas for mixing the
preconditioner parameters across material discontinuities, and for the boundary conditions.
We close the present section by verifying the spectral analysis on a set of model and non-
model test problems, confirming the rapid convergence of the preconditioned iterations,
even in the presence of sharp material discontinuities.

II.1. Preconditioning Neutral Particle Transport Methods

The standard mesh-sweep algorithm commonly used in solving the discretized integro-
differential form of the discrete-ordinates approximation of the neutron transport equation
is focused on the discrete-variable angular flux as demonstrated by Eq. (4). Considering the
linearity of Eq. (4) and the quadrature formula, Eq. (6), then composing the mesh-sweep
operator with the summation operator over angles can be viewed as a mapping of the scalar
flux accomplished via

φl ′ = A(σsφ
l + S), (7)
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In Eq. (7),A is the iteration Jacobian matrix;φl ′ andφl are vectors of the old and new
iterates of the cell-average scalar flux residual, respectively, each of lengthJ, the number of
computational cells in 1D slab geometry;σs is a diagonal matrix whose nonzero elements
are theJ macroscopic scattering cross sections; andS is aJ-vector of the cell-average fixed
neutral particle source. MatrixA represents the inverse of the discrete streaming operator
integrated (or summed) over all angular directions. A standard theorem in linear algebra [9]
is that the convergence of the iterative scheme comprising Eq. (7) plus Eq. (6) is determined
by the spectral radius ofσsA. It is a classical result in neutron transport numerical methods
that these iterations converge slowly in highly scattering, optically thick systems [1–3].

In general, if the iterations, Eqs. (7) and (6), converge to the limitφ∞, then

Bφ∞ = AS, (8)

where

B = I − Aσs, (9)

and I is the J-dimensional identity matrix. Had it been possible to construct and invert
(or factor) matrixB, the transport problem would have been immediately solvable without
iterations [11, 12]. However, for most practical applications this proposition is inadequate,
and asplitting of B to perform the iterations is inevitable. In particular, one can apply the
splitting

B ≡ D− (D− B), (10)

with D selected to be easily invertible, then define the iterative scheme by

Dφl+1 = (D− B)φl + AS. (11)

In this caseD is called thepreconditioner, and Eq. (11) is the preconditioned system. Using
Eqs. (7) and (9) in Eq. (11), one obtains

φl+1− φl = D−1(φl ′ − φl ), (12)

whereφl ′ is the mesh-sweep scalar flux; see Eq. (7). Notice that ifD is not singular then
convergence of the mesh-sweep flux, i.e.,φl ′ = φl , implies convergence of the precondi-
tioned flux to the same solution,φl+1 = φl . Equation (12) is more convenient for practical
purposes than Eq. (11) because usually matricesA andB are too large to construct and
store in memory, whileφl ′ is readily available. While there are many similarities between
the preconditioned system, Eq. (12), and standard DSA, as well as the IDSA, methods, it
differs in one important respect: here the update is made relative to the previous precondi-
tioned iterate rather than the mesh-sweep flux. The spectral analyses conducted below will
demonstrate the importance of this difference in the case of thick computational cells, and
will require that it be rescinded in favor of the traditional update with respect toφl ′ in the
case of thin cells.

Evidently the selection of the preconditionerD bears heavily on the stability and efficiency
of the preconditioned iterations represented by Eqs. (7) and (12). On the one hand a simple
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choice ofD makes the updating step, Eq. (12), computationally inexpensive but may not
sufficiently reduce the number of iterations. A good example of such a choice is

D = I , (13)

which reduces the preconditioned iterations to the SI scheme, i.e., Eqs. (7) and (6). This
choice, Eq. (13), is none other than the classical Richardson iterative scheme, generally
known to require a number of iterations of orderJ2 to achieve convergence for a matrix
equation of orderJ [9, 10]. This estimate for the number of iterations turns out to be too
conservative for SI whenc< 1 or the cell size decreases likeO(J−1); in such cases the
number of SI iterations does not grow indefinitely but peaks or saturates asJ increases,
respectively. Even more sophisticated choices of the preconditioner, for example, the Jacobi
Method,D=Diag(B), the Gauss–Seidel Method,D= Lower Triangle ofB, or Successive
over Relaxation (SOR),D= Lower Triangle ofB with weighted diagonal elements, etc.
which are easy tosolve, require a number of iterations that is of the order of some power of
J for B andD J× J matrices.

At the other extreme, a more complicated choice ofD may result in a substantial reduc-
tion in the number of iterations independent ofJ, but end up being more costly to solve,
as in Eq. (12). Examples of such preconditioners are the FSM–DSA [3] and the IDSA [7],
which possess iteration spectral radii that are bounded well below unity. Even though the
tridiagonal diffusion-like equation (at least in slab geometry) that must be solved at every
iteration is more difficult than the mesh sweep in each discrete direction, usually it results
in a net reduction of execution time, especially in high-quadrature-order problems. This
beneficial effect of DSA and IDSA is projected to be even more pronounced in multidi-
mensional geometry, due to the normally large number of discrete angles employed, even
though in this case the preconditioner becomes a sparse banded matrix that must be solved
iteratively itself. This conjecture is based on experience with the Partial Current Rebalance
acceleration option in the TORT code [13], which employs an SOR algorithm to solve an
acceleration equation that has a diffusion coupling stencil. In large applications this accel-
eration technique typically consumes about 5% of, while dramatically reducing, the total
CPU time.

In spite of the considerable latitude permitted in selecting the preconditioner, thus the
multitude of DSA formalisms in the literature, it is desirable that it satisfy at least one
obvious criterion: that the slowest converging mode of the residual in the SI scheme be an
eigenmode of the preconditioner also, with the corresponding preconditioner eigenvalue
equal to one minus the corresponding eigenvalue of the SI operator. If this is the case, then
the exact solution of the preconditioned system represented by the updating step, Eq. (12),
will result in the immediate elimination of this eigenmode, and because the iterations are
linear it cannot be excited again. Intuitively, if the spectrum of the preconditioned system
is continuous near the slowest converging mode, then neighboring eigenmodes will also
suffer attenuation of their magnitudes, thereby converging rapidly.

The similarity between DSA methodology and tridiagonal preconditioners in slab geom-
etry raises the obvious question of how to generalize it to multidiagonal preconditioners,
and how much of theB matrix elements to exactly include inD. First we show how the
exact elements ofB can be constructed up to a few off-diagonal bands for the WDD system
of Eq. (4); for an algorithmic approach see Ref. [12].
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To compute the elements ofA we differentiate Eq. (7) with respect to the previous iterate
residual

A i, j = 1

σs, j

∂φl ′
i

∂φl
j

. (14)

The diagonal elements ofB are computed by substituting Eq. (4) into Eq. (14) withi set to
j , then using the result in Eq. (9) to obtain

B0
j, j = 1− cj

N∑
n=1

wn
1+ αn, j

1+ εn, j + αn, j
. (15)

Determining the first off-diagonal elements, e.g.,B j, j+1, first requires solving Eq. (4) for
ψ

o,l ′
n, j . Forµn> 0 we use the continuity of the angular flux (and consequently that of the

iteration residual) across cell edges to equate the resulting expression toψ
i,l ′
n, j+1. Substituting

the latter into Eq. (4) atj + 1 produces a relation betweenψ l ′
n, j+1 andφl

j , from which we
compute∂ψ l ′

n, j+1/∂φ
l
j ,µn> 0, while clearly this derivative vanishes forµn< 0. This leads

to

B0
j, j±1 = −cj±1

N∑
n=1

wn
εn, j

(1+ εn, j + αn, j )(1+ εn, j±1+ αn, j±1)
, (16)

where we have assumed symmetry of the angular quadrature: for each discrete ordinate
n there is another discrete ordinaten′ such thatµn′ =−µn andwn′ =wn. In the same
way additional off-diagonal elements ofB can be determined: for example, if we assume
homogeneous cell properties

B0
j, j±2 = −cj

N∑
n=1

wn
εn, j (εn, j + αn, j − 1)

(1+ εn, j + αn, j )3
, (17)

and so on.
The increasing complexity of the elements ofB as we go farther from the diagonal,

even if there exist efficient algorithms for solving such multidiagonal systems, raises the
important question, How many diagonal elements ought to be included? The properties of the
transport operator intuitively suggest that the off-diagonal elements diminish in magnitude
rapidly as they get farther from the diagonal, and thatB becomes diagonally dominant with
increasing cell optical thickness. To quantify these propositions we expand the expressions
in Eqs. (15)–(17) asymptotically in the reciprocal of the cell optical thickness for a model
problem to obtain

B0
j, j = 1− c+ c

σa

N∑
n=1

wn|µn| + O(σa)−2, (18)

B0
j, j±1 = −

c

2σa

N∑
n=1

wn|µn| + O(σa)−2, (19)

B0
j, j±2 = −

c

(σa)3

N∑
n=1

wn|µn|3+ O(σa)−4 = O(σa)−3, (20)
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where we have suppressed the cell indices on the cell properties to indicate model (homo-
geneous material and uniform mesh) configuration. For highly scattering problems,c∼ 1,
Eqs. (18)–(20) imply that the diagonal and first off-diagonal elements ofB are of the same
order; hence they dominate all other elements asσa→∞. Consequently, for highly scat-
tering problems with optically thick cells a tridiagonal preconditioner will very closely
approximate the fullB matrix to the extent that the solution of the preconditioned system,
Eq. (12), will sufficiently approximate theexactsolution, thereby effecting immediate con-
vergence of the iterations. On the other hand, for highly absorbing problems,c∼ 0, the
diagonal elements dominate even the first off-diagonal elements by one order of magni-
tude so that for optically thick problems a diagonal preconditioner (Jacobi method) may be
sufficient to achieve rapid convergence.

II.2. Adjacent-Cell Preconditioners for WDD

Having established the merit of tridiagonal, or adjacent-cell, preconditioners (the diffu-
sion coupling stencil in slab geometry) in the diffusive regime, our next step is to determine
preconditioner parameters that lead to unconditional convergence and efficiency of the pre-
conditioned iterations. The dominance of the tridiagonal elements in this regime intuitively
suggests that the AP elements take the form of Eqs. (15), (16). However, this prescription
violates the selection criterion discussed above because it is well known that the slowest
converging modes in the diffusive regime are the flat modes [3], which do not necessarily
satisfy an AP with Eqs. (15), (16). Hence we seek better prescriptions for the AP elements
via a spectral analysis of the iterative procedure.

First, in analogy to the homogenization process applied to Eq. (4), Eqs. (7)–(12) can be
written in homogeneous form by settingSto zero and interpreting allφ variables as iteration
residuals. Then assuming model problem configuration we decompose all iteration residuals
in the computed quantities into their Fourier modes via

φl
j = 8l exp[ι̂λxj ], (21.a)

ψ l ′
n, j = 9 l ′

n exp[ι̂λxj ], (21.b)

ψ
o,l ′
n, j = 9̃ l ′

n exp[ι̂λ(xj + sg(µn)a/2)], (21.c)

ψ
i,l ′
n, j = 9̃ l ′

n exp[ι̂λ(xj − sg(µn)a/2)], (21.d)

φl ′
j = 8l ′ exp[ι̂λxj ], (21.e)

where ˆι≡√−1, sg is the signum function,λ is the Fourier variable, andxj is the position
of the center of mass of thej th cell. Substituting Eqs. (21) into Eq. (4) yields [7]

8l ′ = c[1− (sin2 r )χ(r )]8l , (22)

where we have assumed symmetry of the angular quadrature and defined

χ(r ) ≡
N∑

n=1

wn
εn(εn + αn)

cos2 r + (εn + αn)2 sin2 r
, (23)

andr ≡ λa/2.
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Using an arbitrary adjacent-cell preconditionerD in Eq. (12) and decomposing into
Fourier modes yield the spectrum of the preconditioned iterations

e(r ) ≡ 8l+1(r )/8l (r ) =
[
1− 1− c+ c(sin2 r )χ(r )

Dd + 2Do − 4Do sin2 r

]
, (24)

whereDd, andDo are the diagonal and off-diagonal elements of the AP, respectively.
The inadequacy of the AP with exact tridiagonal elements, i.e., Eqs. (15), (16), is now

evident. Taking the limitr→ 0 of Eq. (24),

e(0) =
[
1− 1− c

Dd + 2Do

]
, (25.a)

then settingDd=B0
j, j andDo=B0

j, j±1 yield

e(0)→ 1, asc→ 1. (25.b)

A thorough examination of Eq. (25.a) with arbitrary AP elements reveals a necessary con-
dition for the stability of the preconditioned iterations asc→ 1, namely

Do = 1

2

[
1− c

b
− Dd

]
, b ∈ (0, 2). (26)

This stability condition withb= 1 is reminiscent of the cell-centered discretization of the
neutron diffusion operator whereDo is set to the square of the ratio of the diffusion length to
the cell size; it results in immediate removal of ther = 0 eigenmode, the slowest converging
SI mode. For these two reasons, in the remainder of this paper, we refer to Eq. (26) with
b= 1, in particular, as thestability condition. Note that in the worst case, i.e., the trajectory
c= 1, the value ofb is inconsequential to the convergence of ther = 0 eigenmode. In
general, the eigenvalue surfacee(r ; c) given by Eqs. (24) and (26) is multivalued at the
point r = 0, c= 1, with the limit ofe depending on the trajectory of approach to this point.
The limit value ofe is (1− b) for all trajectories exceptc= 1.

II.2.a. Thick-Cell AP for WDD

In the context of model problem configurations there are only two AP parameters to be
determined,Dd andDo. In view of the stability condition, Eq. (26), we are free to choose
only one more condition for the spectrum to satisfy: we require the limit of Eq. (24) to
vanish asr→ 0. The O(r 0) term vanishes by virtue of Eq. (26) withb= 1; the O(r 2)

terms, which are the most significant terms whenc= 1, provide an expression forDo which
when combined with Eq. (26) yields

Dd = c

2

N∑
n=1

wnεn(εn + αn), (27)

essentially eliminating the slowest-converging, flat, eigenmode immediately for allc≤ 1.
The preconditioner defined by Eqs. (26), (27) is the Thick-Cell AP (KAP) [14]. The spectrum
for KAP is depicted in Fig. 1 for the 0NIM with anS4 angular quadrature,c= 1, and various
cell thicknesses. These spectra illustrate the superb efficiency of KAP for cells thicker than
∼5 mfp, a property shared with IDSA [7], but not the FSM–DSA [3]. Nevertheless, KAP’s
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FIG. 1. Spectrum of KAP for the 0NIM withS4 angular quadrature andc= 1.

efficiency, as measured by the smallness of the spectral radius, diminishes with cell size,
and for very thin cells loss of stability creeps in.

While the KAP and NAP presented in this and the next sections apply to WDD in general
only results for the 0NIM,S4, c= 1 case are reported in the remainder of this section.
The spectra forc< 1 are generally smaller than those forc= 1, and for allc are largely
insensitive to the order of the angular quadrature. The spectra of the AP accelerated Step
method are qualitatively similar to those of the 0NIM except that the spectral radius does
not diminish as rapidly with cell size. Consistent with Reed’s results [1] and the IDSA
parametric studies reported earlier [7] the AP accelerated DD method becomes unstable
for cells thicker than 1.6 and 1.1 mfp for KAP and NAP, respectively. The only conditional
stability of the AP for DD is not a disappointing result given the general wisdom that
this discretization of the transport operator often becomes inaccurate for cells thicker than
∼1 mfp. Similarly, the Step approximation accurately represents the relationship between
the edge and cell-average fluxes only for thick cells, i.e., thicker than a few mfp’s. The
0NIM spans the entire range of cell sizes because its spatial weights, Eq. (3.c), approach
the correct limit, DD or Step, as cell thickness approaches 0 or∞, respectively.

II.2.b. Thin-Cell AP for WDD

The original purpose of the preconditioning technique is to provide an iterative solution
alternative to the exact solution algorithm; compare Eqs. (8) and (11). In this work, by
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introducing the mesh-sweep flux into the iterative scheme, Eq. (12), we essentially employ
this technique as an accelerator to the source iterations represented by the mesh sweeps.
This is the reason for the previous iterate flux appearing on the left hand side of Eq. (12),
in contrast to the mesh-sweep flux normally used in the corresponding updating equation
in standard DSA and IDSA methods. By carefully examining the behavior of the iteration
eigenvalue in Eq. (24) as the cell optical thickness approaches zero, we find that, for perfectly
scattering problems,c= 1,

χ(r )→ sin−2 r, 0< r ≤ π/2, asσa→ 0, (28)

hence

e(r ) =
[
1− 1

2Dd sin2 r

]
→ 1, asσa→ 0, (29)

where we used Eqs. (26) and (27). This behavior is verified by the almost flat eigenvalue,
e(r )∼ 1, r far from 0, of this method for thin cells,σa< 0.1, displayed in Fig. 1, with the
small eigenvalue region nearr = 0 resulting from the imposed condition for that mode; see
Eq. (27).

An easy fix to this behavior is to modify the updating formula, Eq. (12), to

φl+1− φl ′ = D−1c(φl ′ − φl ), (30)

which results in error mode decay governed by

8l+1(r ) = c

[
1− χ(r ) sin2 r − 1− c+ c(sin2 r )χ(r )

1− c− 2(1− c− Dd) sin2 r

]
8l (r ). (31)

Again we select theDd parameter so as to effect a zero eigenvalue atr→ 0, Eq. (27), to
obtain the Thin-cell AP (NAP), whose spectra for the 0NIM with anS4 angular quadrature,
c= 1, and various cell thicknesses are plotted in Fig. 2. These spectra show the high effi-
ciency of this preconditioner for all cell thicknesses; nevertheless, comparison with Fig. 1
reveals that for thick cells, KAP provides superior convergence rates.

It is possible to write the NAP formula, Eq. (30), in the form of KAP, Eq. (12), that
resembles more closely standard preconditioned iterations where an intermediate iterate,
here the mesh sweep flux, does not exist. This can be accomplished by subtractingφl from
both sides of Eq. (30) and rearranging to obtain,

φl+1− φl = (I + D−1c)(φl ′ − φl ).

This amounts to a KAP whose preconditioner is the full matrix(I −D−1c)−1. This result
might explain why KAP, with only adjacent-cell coupling, does not accelerate problems
with thin cells too well. In such cases the coupling among the cells that are not adjacent is
too strong to ignore, and only by accounting for this coupling via a full preconditioner like
NAP, as well as standard DSA, can effective acceleration be achieved.

II.2.c. Preconditioners for Non-model 0NIM Problems

For the benefit of the spectral analyses performed above, all discussions so far have
assumed a model problem configuration wherein uniform properties, e.g., size and material
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FIG. 2. Spectrum of NAP for the 0NIM withS4 angular quadrature andc= 1.

composition, are assigned to an infinite, or periodic, row of computational cells. In real
applications, solved using production codes, cell-property discontinuities are common, and
boundary conditions expressing the finite nature of the problem are standard. Therefore, in
order to verify the spectral analysis, and establish the utility of the new method in solving
real problems, we must provide formulas for the boundary conditions, and for mixing
preconditioning methodologies, not only within the same thin/thick cell regime but also
across.

The mixing formula must accomplish two functions: compute the effective precondi-
tioner parameters when two adjacent cells have different properties, and adjust the updating
formula according to the size of the cell in question. The second function is easily accom-
plished by testing the cell size against a cut off value,δ, in a Fortran program, and using the
mesh-sweep (previous iterate of the) scalar flux for updating, when the cell size is smaller
(larger) thanδ, respectively. The first function is accomplished in the traditional way of
mixing in diffusion theory, namely reciprocal averaging [15] of thediffusion coefficient.
For example, the equation for cellj becomes

−D+ j
o ( f j+1− f j )+ D− j

o ( f j − f j−1)+ (1− cj ) f j = γ j
(
φl ′

j − φl
j

)
, (32.a)

D± j
o ≡

2σ j±1aj±1

σ j±1aj±1/Do, j±1+ σ j aj /Do, j
, (32.b)
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FIG. 3. Spectral radius for KAP (dashed curve) and NAP (solid curve) as a function ofσa for the 0NIM with
S4 angular quadrature andc= 1.

whereDo, j is evaluated from Eqs. (26) and (27) using the local properties of cellj , and

γ j =
{

cj , σ j aj ≤ δ,
1, σ j aj > δ.

(33)

Once the system of equations represented by Eq. (32.a) is solved forf j , the scalar flux is
updated using

φl+1
j =

{
φl ′

j + f j , σ j aj ≤ δ,
φl

j + f j , σ j aj > δ.
(34)

To determine the value of the cutoff cell size,δ, we note from comparing Figs. 1 and 2
that for the intermediate cell thickness where the cutoff size occurs, 1<σa< 5, the largest
eigenvalue is located atr =π/2. Thus we plot the eigenvalue at that point vs cell thickness
in this range for KAP and NAP in Fig. 3. We conclude from Fig. 3 thatδ∼ 1.8 for the 0NIM
with S4 angular quadrature andc= 1, and use this value for other cases assuming it is not
sensitive to the quadrature order or the scattering ratio.

The system of equations, Eqs. (32.a), must be augmented with appropriate expressions
for the boundary conditions before it can be solved. For example, for vacuum boundary
conditions we use Larsen’s recipe [3]. More specifically, a fictitious cell is appended on
the left (right) side of the problem external boundaries with nuclear and physical properties
identical to those of cell 1 (J) and with cell-average flux residual01 f1 (0J f J), respectively
[7]. The proportionality factors0 j are computed via Larsen’s prescription that the edge flux
residual is linear in the angular variableµn to obtain

0 j = Do, jσ j aj /γ jβ − 1

Do, jσ j aj /γ jβ + 1
, j = 1, or J, (35.a)

where we have defined

β ≡
N/2∑
n=1

wnµn. (35.b)
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Using these expressions in a vacuum boundary condition on the left external edge yields

−D+1
o f2+

[
Do,1(1− 01)+ D+1

o

]
f1+ (1− c) f1 = γ1

(
φl ′

1 − φl
1

)
, (36)

with an analogous expression for the right external boundary.

II.3. Numerical Verification of 0NIM Theoretical Results

In order to verify the assumptions and hypotheses made in performing the spectral analysis
of the new acceleration scheme, as well as the mixing formulas and boundary condition
expressions for non-model problems, we implemented our new method, in addition to SI,
and FSM–DSA, in the slab geometry WDD computer code AP1D. We use this code to solve
the test problem shown in Fig. 4, which is made up of two materials with different optical
thicknesses.

The scattering ratio is set to 1 in both materials as this represents the worst case as far
as convergence rate is concerned, and the discontinuities in cell properties, namely size
and total cross section, are lumped into the dimensionless parameterσa. We independently
vary the optical thicknesses of the two materials,σ1a1 andσ2a2, between 10−5 and 10 to
cover a wide range of possible material/mesh discontinuities, and we observe the number
of iterations required to achieve 10−4 relative pointwise convergence using the standard SI,
the FSM–DSA, and the new preconditioned iterations. Table I contains these results; clearly
acceleration of some sort is necessary for very thick cells, as is well known. Table I shows
the very high efficiency of the preconditioned iterations compared to that of the SI scheme,
and its immunity to severe cell-property discontinuities. The results for the new method
along the diagonal,σ1a1= σ2a2, represents the uniform cell-property case, and serves as
a verification of the spectral analyses presented above. While the FSM–DSA performs
equally well for thin problems, the preconditioned iterations converge faster when thick
regions are introduced into the problem. Indeed for very thick problems our new method
converges immediately, as predicted by the spectral analysis.

FIG. 4. Configuration for 0NIM test problem.
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TABLE I

Number of Iterationsa Required to Achieve 10−4 Relative Pointwise Convergence for the Test

Problem Using 0NIM with AP (Top), FSM–DSA (Middle), and SIb (Bottom)

σ1a1

σ2a2 10−5 0.01 0.1 0.5 1 5 10

10−5 1 2 4 4 2 2 1
1 2 4 5 4 4 4
2 3 6 17 29 120 215

0.01 3 3 4 4 3 3 3
3 3 4 5 4 4 4
4 5 8 18 30 124 222

0.1 5 5 5 5 4 4 4
5 5 5 5 5 5 5

15 15 18 29 44 159 279

0.5 4 4 5 4 4 4 4
5 5 5 5 5 5 5

67 67 71 88 110 288 477

1 3 3 4 4 3 3 3
4 4 4 4 4 4 4

149 149 154 175 203 422 659

5 2 2 3 3 2 2 1
4 4 4 4 4 3 3

704 704 709 729 754 956 1199

10 1 2 3 3 2 2 1
4 4 4 4 4 3 3

1193 1194 1197 1213 1233 1396 1595

a Iteration counter initialized at 0.
b Potentially false convergence in cases requring many iterations.

III. ACCELERATION OF THE 1NIM

Early attempts at extending the IDSA formalism to the linear NIM (1NIM) were based
on the assumption that the spectral radius depends strongly on the intramoment coupling,
but weakly on the intermoment coupling. Had this been the case, it would have allowed
acceleration of the zeroth and first spatial moments of the flux to be performed separately
with uncoupled standard diffusion operators. This assumption did not materialize, how-
ever, and it became necessary to explore preconditioners that include in the preconditioner
operator terms that couple the spatial moments of the scalar flux. The resulting AP still pos-
sesses a cell-centered diffusion stencil but in the block sense, implying a high probability
that standard iterative techniques will be adequate in this case, but that existing diffusion
codes cannot be employed as acceleration modules without significant modifications. It is
worth noting at this point that the edge-centered FSM–DSA applied in slab geometry to the
Linear Discontinuous method (which is comparable to 1NIM) results in a single diffusion
equation that must be solved at every acceleration stage for the cell-edge corrections that
are then applied to the cell moments of the flux [3]. Clearly this is an advantage of the FSM–
DSA over AP in slab geometry that we conjecture will not stand in multidimensional cases
where multiple coupled cell-centered diffusion equations could result from FSM–DSA,
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and where there are fewer cell-moment discrete variables than cell-edge discrete variables.
Another advantage that edge-centered DSA for linear methods in slab geometry possesses
is its robustness in the presence of sharp material discontinuities; however, this advantage
does not carry over to multidimensional situations where the performance of both edge-
and cell-centered acceleration techniques deteriorates in the presence of sharp material
discontinuities.

We start this section with a spectral analysis of the uncoupled diffusion operator approach
to show its inadequacy regardless of the diffusion parameters employed. We explain this
behavior by an asymptotic analysis to show that the elements of the full transport operator
that couple the zero and first spatial moments are of the same order as the diagonal elements
in the diffusive regime, and thus cannot be neglected. Along the same lines presented for
the 0NIM in Section II, we develop KAP and NAP for the 1NIM, which are extremely
efficient for corresponding cell thicknesses and describe mixing formulas and boundary
conditions for non-model problems. Due to the complexity of the 1NIM only the NAP was
implemented in a computer code because it is highly efficient for all cell sizes. We close
this section with numerical tests to verify the predicted spectral properties for NAP, and test
its robustness in the presence of sharp material and mesh discontinuities.

III.1. Inadequacy of Uncoupled Preconditioners for 1NIM

The 1NIM equations [8] in slab geometry can be written in tensor form,

T1
n, j

[
ψ l ′

n, j , ψ
x,l ′
n, j , ψ

o,l ′
n, j

]T = S1
n, j

[
φl

j , φ
x,l
j , ψ

i,l ′
n, j

]T
, n = 1, . . . , N; j = 1, . . . , J, (37)

whereψ x,l ′
n, j andφx,l

j are the linear spatial moments of thenth angular flux residual and the
scalar flux residual over thej th computational cell, respectively. The superscript on the
matrices in Eq. (37) denotes the 1NIM, and these matrices are given by

T1
n, j ≡


1 0 εn, j /2

−sg(µn)εn, j 1 sg(µn)εn, j /2

αn, j 3 sg(µn) −(αn, j + 1)/2

 , (38)

S1
n, j ≡


cj 0 εn, j /2

0 cj −sg(µn)εn, j /2

0 0 (αn, j − 1)/2

 , (39)

where for the 1NIM, the spatial weights are given by [8]

αn, j = [coth(1/εn, j )− εn, j ]
−1− 3εn, j . (40)

All other terms are as defined in Section II. The equations represented by the first and second
rows of Eq. (37) stand for the balance condition on the zeroth and first spatial moments of
the angular flux residual, respectively, while the third row stands for the weighted difference
relation, where the incoming angular flux residual has been moved to the RHS as in Eq. (4).

Applying two uncoupleddiffusivepreconditioners to the zeroth and first spatial moments
of the scalar flux residuals governed by the square of the dimensionless diffusion length,
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1ν , yields the system

−1ν
(

f νj+1− 2 f νj + f νj−1

)+ (1− c) f νj = c
(
φ
ν,l ′
j − φν,lj

)
. (41)

The preconditioning stage is then followed by the updating formula

φ
ν,l+1
j = φν,l ′j + f νj , ν = null, x. (42)

In Eq. (41) we assume a model problem configuration, thus suppressing the cell index on
the scattering ratio and1ν . The attractiveness (simplicity) of this method is evident from
Eq. (41); the system of equations that must be solved in the acceleration stage is decoupled
into two sets, each of which is a regular, cell-centered discretization of the diffusion equation,
that can be solved using existing efficient algorithms and codes. The question, however, is
whether there exists a choice of1ν that makes the iterative scheme represented by Eqs. (37),
(41), and (42) unconditionally stable and rapidly convergent.

We augment the Fourier decomposition in Eqs. (21) with

φ
x,l
j = 8x,l exp[ι̂λxj ], (43.a)

ψ
x,l ′
n, j = 9x,l ′

n exp[ι̂λxj ], (43.b)

φ
x,l ′
j = 8x,l ′ exp[ι̂λxj ], (43.c)

f νj = Fν exp[ι̂λxj ], ν = null, x, (43.d)

and substitute into Eqs. (37), (41), and (42). After some manipulation of the decomposed
equations we obtain the Fourier representation of the mapping of the error modes by the
mesh-sweep process

Φl ′ = cχ x(r )Φl , (44)

where we defined the vectorΦk≡ [8k,8x,k]T , k≡ l , or l ′, and

χ x(r ) ≡
[

1− ξ1(r ) sin2 r − 3ι̂
2 ξ2(r ) sin(2r )

ι̂
2ξ2(r ) sin(2r ) 1− 3ξ2(r ) cos2 r − 3ξ3(r ) sin2 r

]
, (45)

ξ1(r ) ≡
N∑

n=1

wn
εn(αn + 3εn)[1+ εn(αn + 3εn)]

(αn + 3εn)2 cos2 r + [1+ εn(αn + 3εn)]2 sin2 r
, (46.a)

ξ2(r ) ≡
N∑

n=1

wn
εn(αn + 3εn)

(αn + 3εn)2 cos2 r + [1+ εn(αn + 3εn)]2 sin2 r
, (46.b)

ξ3(r ) ≡
N∑

n=1

wn
ε2

n[1+ εn(αn + 3εn)]

(αn + 3εn)2 cos2 r + [1+ εn(αn + 3εn)]2 sin2 r
, (46.c)

and where we have assumed symmetry of the angular quadrature. Equation (44) is the 1NIM
analogue of Eq. (22), and the superscript onχ x indicates that it is the 1NIM mapping that
governs the evolution of the unaccelerated iterates’ eigenmodes.
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Fourier analysis of the diffusion equations, Eq. (41), produces an expression which when
substituted in the Fourier decomposition of Eq. (42) yields the mapping of the error modes
for the preconditioned system

Φl+1 = c

{
χ x +

[
1/(1− c+ 41 sin2 r ) 1/(1− c+ 41 sin2 r )

1/(1− c+ 41x sin2 r ) 1/(1− c+ 41x sin2 r )

]
[cχ x − I ]

}
Φl . (47)

Attenuation of the accelerated residual modes is determined by the spectrum of the matrix on
the RHS of Eq. (47). It is straightforward to show that forc= 1, one of the eigenvalues of this
matrix diverges asr−2 whenr→ 0 regardless of1ν , thereby establishing the inadequacy
of this iterative method.

III.2. Adjacent-Cell Preconditioners for 1NIM

In order to understand the reason for the inadequacy of preconditioners that lack the
coupling between the zeroth and first spatial moments of the flux we compute the exact
multidiagonal preconditioner,B matrix, for the 1NIM (in this case ablockmatrix). Through
an asymptotic analysis analogous to that conducted in Section II.1 we can then determine
the relative importance of this coupling in the limit of diffusive regimes. Since the procedure
is identical to the one detailed in Section II.1 we skip to the final result,

B1
j, j = I − c

N∑
n=1

wn

1+ (εn + 1)(αn + 3εn)

[
1+ (αn + 3εn) 0

0 1+ αn(εn + 1)

]
, (48.a)

B1
j, j±1 = −c

N∑
n=1

wn

[1+ (εn + 1)(αn + 3εn)]2

[
εn(αn + 3εn)

2 ±3εn(αn + 3εn)

∓εn(αn + 3εn) −3εn

]
, (48.b)

B1
j, j±2 = −c

N∑
n=1

wn[1+ (εn − 1)(αn + 3εn)]

[1+ (εn + 1)(αn + 3εn)]3

[
εn(αn + 3εn)

2 ±3εn(αn + 3εn)

∓εn(αn + 3εn) −3εn

]
,

(48.c)

where the superscript onB1 denotes the 1NIM. In Eqs. (48) we have assumed uniform cell
properties by suppressing the cell index on the preconditioner parameters, and we assumed
symmetry of the angular quadrature.

It is clear from Eqs. (48) that while the diagonal block exactly decouples the zero and first
moments of the scalar flux, the off-diagonal blocks do not. Indeed, an asymptotic analysis
of the exact preconditioner blocks in the limit of thick computational cells yields

B1
j, j = (1− c)I + c

σa

N∑
n=1

wn|µn|
[
1 0
0 3

]
+ O(σa)−2, (49.a)

B1
j, j±1 = −

c

2σa

N∑
n=1

wn|µn|
[

1 ±3
∓1 −3

]
+ O(σa)−2, (49.b)

B1
j, j±2 = −

c

(σa)3

N∑
n=1

wn|µn|3
[

1 ±3
∓1 −3

]
+ O(σa)−4. (49.c)

Equations (49) agree with the 0NIM result that whenc∼ 1 the first off-diagonal blocks are
of the same order as the diagonal block, and thus cannot be ignored even for very thick
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computational cells; blocks farther from the diagonal vanish faster asσa→∞. The most
important feature of the exact preconditioner that is illustrated by Eqs. (49) is the fact that
the terms coupling the zeroth and first spatial moments of the scalar flux in the off-diagonal
blocks areO(σa)−1, the same order as the diagnoal block and the other elements of the
off-diagonal block. This explains the poor spectral properties of preconditioners that ignore
this coupling.

III.2.a. Thick-Cell AP for 1NIM

To proceed with the derivation of KAP for 1NIM we introduce a Fourier decomposition
of the generic block-AP to obtain the mapping of the error modes by the accelerated scheme

Φl+1 = [I + D−1(cχ x − I)]Φl , (50.a)

where the Fourier-decomposed generic KAP is

D(r ) ≡
[

D0 0

0 D1

]
+ 2

[
D0,0 cos(2r ) ι̂D0,1 sin(2r )

ι̂D1,0 sin(2r ) D1,1 cos(2r )

]
, (50.b)

andχ x is given by Eq. (45). Note that in Eq. (50.a) the KAP updating formula, i.e., with
respect to thel th iterate, is used.

Since the details of the derivations of KAP and NAP are the same, and because only
the NAP is implemented and tested for 1NIM, we briefly outline the derivation of KAP
and elaborate on the analogous details in the following section. Removing the singularity
in the spectrum of KAP at the origin in Fourier space results in a stability condition that
relates the elements of the diagonal and off-diagonal blocks ofD. Even then, there are
sufficient degrees of freedom to permit imposing two conditions on the spectrum, and we
choose these to be that the KAP eigenvalues vanish in the limitr→ 0, and atr =π/2, an
idea reminiscent of the approach introduced in Ref. [5] for the DD discretization of the
transport equation. This procedure leads to the following expressions for the KAP elements
appearing in Eq. (50.b),

D0 = 1− c+ cξ1(π/2)

2
, (51.a)

D1 = 1− c+ 3c

2
[ξ2(0)+ ξ3(π/2)], (51.b)

D0,0 = −c

4
ξ1(π/2), (51.c)

D0,1 = 3c

4
ξ2(0), (51.d)

D1,0 = [1− c+ 3cξ2(0)][ξ1(0)− ξ1(π/2)] − 3c[ξ2(0)]2

12ξ2(0)
, (51.e)

D1,1 = 3c

4
[ξ2(0)− ξ3(π/2)]. (51.f)

The spectrum of the 1NIM,e(r ), comprises two eigenvalues per Fourier moder . Since
the rate of convergence is dictated by the eigenvalue of the larger magnitude over the Fourier
space, we are particularly interested in sup|e|, where the sup is over the two eigenvalues
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FIG. 5. Spectra of KAP for the 1NIM withS4 angular quadrature andc= 1.

at r ; we loosely refer to this asspectrumin the following discussion. Spectra for the KAP
iterative method are shown in Fig. 5 for the 1NIM withS4 angular quadrature,c= 1, and
various cell optical thicknesses. In these plots we assign a negative value to sup|e| if the
eigenvalues are complex. Note the complex spectra for allr ∈ [0, π/2] and for all values
of σa a depicted in Fig. 5. The spectra shown in Fig. 5 resemble their 0NIM counterparts
depicted in Fig. 1 with two significant differencs. First, the high frequency eigenmodes,
r =π/2, converge immediately here as required by the condition imposed in the derivation
of the KAP elements. Second, the spectral radius of the 1NIM KAP is generally smaller than
that of the 0NIM KAP, and for very thick cells,σa≥ 10, it is almost an order of magnitude
smaller. Nevertheless, this method still lacks the necessary efficiency for computational
cells of thin and intermediate thickness, thus motivating derivation of a NAP for 1NIM in
the next section.

III.2.b. Thin-Cell AP for 1NIM

The development of thin-cell AP, NAP, for the 1NIM follows essentially the same pattern
established by the 0NIM development as described in Section II.2.b. Specifically, we alter
the updating formula to make the update with respect to the mesh-sweep scalar flux instead of
the previous iterate. Through a Fourier decomposition the error mode mapping is described



380 Y. Y. AZMY

by an expression similar to Eq. (50.a) but with the first identity matrix,I , appearing on the
RHS replaced bycχ x, to obtain

N(r ) = c[χ x(r )+ D−1(r ){χ x(r )− I }], (52)

which maps the eigenmodes of the NAP-accelerated residual iterates. If one takes the limit
of N asr→ 0 and requires the diagonal elements to approach zero while the off-diagonal
elements remain bounded, a sufficient condition for the flat mode eigenvalue to vanish yields
the formulas

D0,0 = 1− c− D0

2
, (53.a)

D1,0 = D1+ 2D1,1

8D0,1

[
1− c− D0+ 1

2
ξ1(0)

]
− c

4
ξ2(0), (53.b)

D0,1 = 3ξ2(0)

4

D1+ 2D1,1

1− c[1− 3ξ2(0)]
, (53.c)

D1,1 = 1

2

[
1

1− 3ξ2(0)
− c− D1

]
. (53.d)

Similar to the KAP case, here also we have enough preconditioner parameters to require
the iteration eigenvalues to vanish atr =π/2, to obtain the conditions

D0 = 1− c+ 1

2

ξ1(π/2)

1− ξ1(π/2)
, (54.a)

D1 = 2D1,1− c+ 1

1− 3ξ3(π/2)
= 1

2

[
1

1− 3ξ3(π/2)
+ 1

1− 3ξ2(0)

]
− c. (54.b)

Equations (54) can be substituted in Eqs. (53) to obtain explicit expressions for all the NAP
parameters if desired.

Spectra of the 1NIM NAP withS4 angular quadrature,c= 1, and various cell optical
thicknesses are plotted in Fig. 6, where negative values of sup|e| imply complex eigenvalues
at a givenr . The discontinuities in the spectra in Fig. 6 withσa= 0.1 and 0.5 indicate points
of transition from real to complex spectra. These spectra exhibit excellent spectral properties,
and bear a strong resemblance to their 0NIM counterparts. While the NAP provides an
unconditionally stable, rapidly convergent iterative scheme for all cell thicknesses, it is less
efficient than the KAP for computational cells thicker than∼5 mfp, where KAP converges
extraordinarily fast. Nevertheless, the complexity of the mixing process in this higher order
method precludes combining KAP and NAP into a conditional preconditioner as has been
accomplished for the 0NIM; hence only the NAP is implemented and tested as described
in Section III.3.

III.2.c. Preconditioners for Non-model 1NIM Problems

In order to determine the mixing formula for the 1NIM NAP we extended the standard
approach used to derive the reciprocal averaging formula to include the linear spatial moment
of the flux also [15]. This results in reciprocal averaging formulas for each of the elements
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FIG. 6. Spectra of NAP for the 1NIM withS4 angular quadrature andc= 1.

of the AP generally along the same lines as Eq. (32.a),
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, (55)

whereD± j
i,i ′ are defined in analogy to Eq. (32.b). Since only NAP is considered here the

updating formula is with respect to the mesh-sweep flux,φ
ν,l ′
j , ν≡ null, x.

The boundary conditions for the 1NIM AP are also derived in analogy to the 0NIM case
wherein the zeroth and first spatial moments of the scalar flux in the fictitious cells to the
left and right boundaries of the problem are expressed as01 f ν1 and0J f νJ , ν≡ null, x,
respectively, where0 j , j = 1 or J, are given by Eq. (35.a).

III.3. Numerical Verification of 1NIM Theoretical Results

In order to test the validity of the assumptions and hypotheses made in performing
the spectral analysis presented above, and to demonstrate the efficiency of the developed
preconditioners we upgraded the test code AP1D described in Section II.3 to include the
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TABLE II

Number of Iterationsa Required to Achieve 10−4 Relative Pointwise Convergence for the Test

Problem Using 1NIM with AP (Top), and SIb (Bottom)

σ1a1

σ2a2 10−5 0.01 0.1 0.5 1 5 10

10−5 2 3 4 5 6 5 5
2 3 6 17 32 215 558

0.01 3 4 4 5 5 100c 100c

4 5 8 18 33 218 562

0.1 6 6 6 7 8 24 40
15 15 18 29 45 242 597

0.5 6 6 7 6 6 12 19
69 70 74 91 115 355 746

1 7 6 8 6 5 7 11
170 171 176 201 232 524 936

5 6 100c 23 13 8 4 4
1682 1683 1693 1739 1797 2256 2804

10 5 100c 40 21 12 5 4
4040 4042 4052 4098 4156 4610 5133

a Iteration counter initialized at 0.
b Potentially false convergence in cases requring many iterations.
c Did not converge in 100 iterations.

1NIM. To verify the spectral analysis, mixing formula, and boundary conditions for the
1NIM NAP we solved the same suite of test problems shown in Fig. 4 with the new
acceleration method and SI. It is important to note that unlike many implementations of high
order transport methods, the convergence criterion is applied here to both spatial moments
of the scalar flux, not just the average flux. The results of these numerical experiments are
shown in Table II. The number of iterations for AP along the diagonal, i.e.,σ1a1= σ2a2, is
in excellent agreement with the spectral analysis graphically depicted in Fig. 6. However,
some of the cases with sharp material discontinuities consume more iterations than can be
justified by the analysis, and a few do not converge at all. These peculiar cases might in
fact be a consequence of a larger pattern observed in multidimensional geometries and at
present under investigation [16]. Namely, there is strong evidence that there do not exist
unconditionally stable and robust preconditioners with a cell-centered diffusion coupling
stencil for problems with sharp mesh and material discontinuities. In any case, it is evident
from the results shown in Table II that AP converges over a large region in parameter space,
and that when it does it saves many inner iterations required for convergence by SI.

IV. CONCLUSION

We applied the preconditioning technique to neutral particle transport methods with the
purpose of accelerating iterative convergence. Preconditioning provides a general frame-
work for studying the spectral properties of a wide variety of acceleration techniques, like the
standard Jacobi, SOR, etc., methods of numerical analysis, linear DSA methods studied ex-
tensively in the nuclear field, or novel non-traditional operators. Indeed, unlike DSA, where



PRECONDITIONERS FOR NEUTRAL PARTICLE TRANSPORT 383

the diffusion operator naturally arises from taking theP1 approximation of the discrete-
variable transport equation, when we focus on preconditioners that operate on the spatial
moments of the scalar flux wederivethe discretized diffusion equation as a special case of a
general necessary condition for stability. Such preconditioners couple adjacent cells, hence
the term Adjacent-Cell Preconditioners (AP), in a cell-centered diffusion coupling stencil
that is easy and efficient to solve by most available diffusion codes. In addition, because
AP is cell-centered it involves fewer discrete variables when extended to multidimensional
geometry or higher order spatial approximations than the corresponding edge-centered or
point-centered methods.

In this paper we derived AP in slab geometry for a class of lowest order methods charac-
terized by the WDD formula and for the first-order Nodal method 1NIM. Spectral analysis of
the AP-accelerated methods on model problem configurations illustrates its unconditional
stability and effectiveness in reducing the number of iterations required for convergence.
Indeed, the spectral radius vanishes in the limit of very thick computational cells, the cases
most needing of acceleration, implying immediate convergence. Testing of our new tech-
nique in a suite of test problems designed to cover a wide range in parameter space, and
including material discontinuity, demonstrates its efficiency in slab geometry for all WDD
cases and most 1NIM cases.

The focus in this paper has been on the efficiency of the acceleration method, not on the
accuracy of the solution obtained; since AP converges to the same solution as the unaccel-
erated scheme (see Eq. (12)), the assumption is that the user has selected the best mesh to
balance accuracy with computational efficiency. The reader is reminded that because WDD
methods, including 0NIM, do not possess the thick diffusion limit of the transport equa-
tion their local accuracy deteriorates significantly for thick cells where AP has the greatest
advantage. In contrast, 1NIM preserves the thick diffusion limit behavior of the transport
equation; hence it can provide highly accurate solutions at increasing computational effi-
ciency with increasing cell size.

We have already extended the AP approach to multidimensional Cartesian geometry and
implemented the resulting method in the three dimensional production transport code TORT
[17]. The multidimensional AP has essentially the same excellent spectral properties for
model problems as its slab geometry counterpart. However, attempts to achieve uncondi-
tional robustness in problems with sharp mesh and material discontinuities have failed [18],
and recently have been proven to be mathematically impossible to achieve [16]. We conjec-
ture that the lack of unconditional stability of the AP for 1NIM with material discontinuity
is related to this fact. It would be interesting to explore nontraditional preconditioners in
pursuit of this goal.
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