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We propose preconditioning as a viable acceleration scheme for the inner iterations
of transport calculations in slab geometry. In particular we develop Adjacent-Cell
Preconditioners (AP) that have the same coupling stencil as cell-centered diffusion
schemes. For lowest order methods, e.g., Diamond Difference, Step, and 0-order
Nodal Integral Method (ONIM), cast in a Weighted Diamond Difference (WDD)
form, we derive AP for thick (KAP) and thin (NAP) cells that for model problems
are unconditionally stable and efficient. For the First-Order Nodal Integral Method
(INIM) we derive a NAP that possesses similarly excellent spectral properties for
model problems. [Note that the order of NIM refers to the truncated order of the
local expansion of the cell and edge fluxes in Legendre series.] The two most attrac-
tive features of our new technique are: (1) its cell-centered coupling stencil, which
makes it more adequate for extension to multidimensional, higher order situations
than the standard edge-centered or point-centered Diffusion Synthetic Acceleration
(DSA) methods; and (2) its decreasing spectral radius with increasing cell thickness
to the extent that immediate pointwise convergence, i.e., in one iteration, can be
achieved for problems with sufficiently thick cells. We implemented these methods,
augmented with appropriate boundary conditions and mixing formulas for material
heterogeneities, in the test code AP1D that we use to successfully verify the analytical
spectral properties for homogeneous problems. Furthermore, we conduct numerical
tests to demonstrate the robustness of the KAP and NAP in the presence of sharp
mesh or material discontinuities. We show that the AP for WDD is highly resilient to
such discontinuities, but for INIM a few cases occur in which the scheme does not
converge; however, when it converges, AP greatly reduces the number of iterations
required to achieve convergence.

Key Words:preconditioning; adjacent-cell preconditioner; neutral particle trans-
port; spectral analysis.
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I. INTRODUCTION

The slow convergence of Source Iterations (SI) traditionally employed in solving neut
particle (neutrons and photons) transport problems in the diffusive regime prompted
search for efficient acceleration schemes. Among these, the Diffusion Synthetic Acce
ation (DSA) method was initially attractive because it was believed that standard, hig
efficient, cell-centered codes based on diffusion theory could be attached simply as an a
eration module t@anytransport code. It was not long until this plan, not DSA per se, faile
in some cases [1], in fact primarily the cases most in need of acceleration in the first ple
The conditional stability of DSA for accelerating the Diamond Difference (DD) method, tf
dominant method of the time, was proved through the analysis by Reed of a model config
tion, i.e., aninfinite row of identical cells [1]. This behavior was later articulatedldouffe’s
Consistency Principlevhich states that a necessary condition for stability and efficiency
a DSA scheme is theonsistencyetween the discrete-variable forms of the diffusion anc
transport operators involved [2]. However, the nature of this consistency, and a systen
approach to deriving the discrete-variable DSA equations remained unspecified until Lal
interpreted consistency in tderivationalsense and prescribed the Four Step Method (FSM
as a means of deriving an unconditionally stable and efficient DSA [3]. He demonstra
FSM for several spatial approximations in slab geometry [3]; then McCoy and Lars
verified the predicted spectral properties for model, as well as non-model, problems [4

Research into acceleration methods has not ceased since then and has been mot
primarily by the following considerations:

1. The difficulty of the FSM-DSA formalism, which inhibits its extension to multidi-
mensional or non-Cartesian geometries, higher order methods, and alternative discretiz
schemes, e.g., the nodal and characteristic methods. Over the years many authors ha
troduced simplifying assumptions to overcome this obstacle, achieving varying degree
success.

2. A nonstandard edge-centered form of the FSM—-DSA acceleration equation, whicl
multidimensional cases requires solving a discrete-variable problem larger than that so
by cell-centered schemes that have been studied, analyzed, and tested more compr
sively.

3. The potential for achieving spectral properties better than those achieved by the F¢
DSA.

A cell-centered scheme, which resembles to a large extent a DSA method, was prop:
and successfully tested by Gelbard and Khalil for DD in slab geometry [5]. Later Kha
[6] formulated a Consistent Diffusion Differencing (CDD) acceleration technique that |
showed is equivalent to FSM-DSA wit§ angular quadrature in slab geometry, ther
proceeded to illustrate that it can be written in a cell-centered form. However, extens
of CDD to multidimensional geometry requires simultaneously solving for the transver:
leakage discrete variables which are defined on cell edges. More recently, in an effol
better understand Reed’s results, the Imposed DSA (IDSA) scheme was reported [7
this method a cell-centered diffusion equation with an arbitrary diffusion lengtipissed
to accelerate the 1D Weighted Diamond Difference (WDD) discrete ordinates form of 1
transport equation. [The WDD includes as special cases several standard methods, st
DD, the Step method, and the Zero-Order Nodal Integral Method (ONIM) [8], characteriz
by a single spatial parameter; the order of NIM specifies the order of the truncated Leget
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expansion of the flux as detailed in Ref. [8].] Spectral analysis of the resulting acceler
iterative process yielded the spectral radius as a function of the diffusion length anc
computational cell optical thickness, for various values of the WDD spatial weights [7].
results of this work showed that Reed’s conclusion [1] regarding the failure of cell-cente
schemes to accelerate thick-cell problems is strictly true for the DD method used in
analysis, but that it does not hold for large-weight WDD methods, such as Step, and
ONIM.

The IDSA essentially legitimized the search for acceleration operators of the cell-cent
diffusive type to implement with non-DD discretizations of the transport equation. In tl
paper we present a new approach for accelerating iterative convergence of WDD an
linear method, 1NIM [8], in slab geometry that is based on traditional preconditioni
studied as a general framework in developing iterative methods for solving large probl
in linear algebra [9, 10]. In contrast to the IDSA [7], here we start by considering a cl
of cell-centered preconditioner coupling stencils, then show that a generalized diffu:
relation among the elements of the preconditioner with adjacent-cell coupling is neces
for the stability of the iterative scheme. Thus, in Section Il we examine the case of WI
a zero-order class of methods, in great detail, deriving and verifying Adjacent-Cell F
conditioners (AP) that are unconditionally stable, and whose spectral radii decrease to
with increasing cell thickness. Due to the complexity of the first-order case, in Sectior
we briefly describe AP for thick cells, then examine in detail only the AP for thin cells a
1NIM, which has spectral properties that are as desirable as those of the WDD scheme
spectral analyses conducted in Sections Il and Il are based on decomposing the ite!
residual into Fourier modes for model problem configurations characterized by an infi
row of equal-sized computational cells with homogeneous material composition. Real
problems of non-periodic finite extent and material heterogeneities do not permit a Fol
analysis; however, we extend the AP formalism to such cases by applying standard forn
for vacuum boundary conditions, and for mixing the preconditioner elements across n
and material discontinuities. Numerical tests conducted with the slab geometry comy
code AP1D are included in both Section Il and Section Il to verify this extension of t
spectral analysis results, and to facilitate examination of the effect of material and n
discontinuities on the efficiency of the AP. A brief summary of this work and our me
conclusions are included in Section IV.

Il. ACCELERATION OF THE WDD

The most general form of the WDD form of the one-group, steady state, discrete ordin
approximation of the neutron transport equation in slab geometry comprises two se
relations. The first set is a per cell statement of balance of sourcesrdsdf neutrons

eng (U — U]+ =cidy+s,  n=1...Nij=1..J  (La)

wherel andl” denote the previous and present inner iterations, respectiq{?{:’]y;is the
present iterate of theth angular flux averaged over cglf /o' andy;; are the present
iterates of thenth angular flux evaluated at the outgoing and incoming edges ofjcell
respectively;d?'j is the previous iterate of the scalar flux averaged overjcejlis the fixed
source averaged over cgllthe reciprocal of half the optical thickness of cglis defined
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as

2
smE'MV (1.b)

0jaj

wn is thenth discrete directiony; is the macroscopic total cross section in gely; is the
size of cellj; andc; is the scattering ratio in ceJl. Equation (1.a) is exact in the sense that
it is obtained by direct integration of the continuum transport equation and using stanc
definitions of the cell-average flux and source. The terms on the left hand side of Eq.
represent the loss of neutrons from celby streaming, and collisions, while the terms on
the right hand side (RHS) represent the sources from isotropic scattering, and external 1
sources, respectively.

The second set of equations in a generic WDD form of the discrete-variable transy
equation provides an additional weighted-difference relation between the cell-average
cell-edge flux variables

~| 14+ oanj\ ~or l—anj\ ~ir .
wm=<—3igw%+( Z“Owh, n=1,....,N;j=1,...,3. (2)

The dependence of the spatial weights; < [0, 1] on problem parameters is determined
by the formalism of the underlying numerical method or simplifying assumptions appli
directly to Eq. (2). For example, DD corresponds to

an,j = 07 (361)

equivalent to expanding the flux within cgllin a Legendre series truncated at order two
The Step method assumes a thick cell where the exponential decay of the incoming cell-¢
flux causes it to dominate the cell-average flux, hence

anj =1 (3.b)

The ONIM is the lowest order member of a class of methods whose order denotes
truncation order of Legendre expansions of the flux within each cell, and in multidimensiol
cases on cell edges also [8]. The spatial weights for the ONIM are given by [8]

on,j = coth(1/en j) — én,j. (3.c)

Solving Egs. (1.a) and (2) for a given cell-average scalar flux, i.e., initial guess or previ
iterate, along one discrete ordinate over the entire mesh s typically conducted via the “m¢
sweep” algorithm, which amounts to the following. The starting cell for each angle
one with an external boundary where the incoming flux is explicitly (e.g., vacuum bound:
condition) or implicitly specified in terms of the outgoing flux at this boundary (reflective
albedo, or periodic boundary conditions). The incoming flux in Egs. (1.a) and (2) is setto
prescribed value if an explicit boundary condition is specified, or to a previously compu
outgoing flux otherwise, i.e., mesh sweep aleng, or previous iterate when iterations
on the boundary condition are necessary. The mesh sweep then proceeds by recur:
solving Egs. (1.a) and (2) simultaneously for the cell-average flux and outgoing cell-ec
flux, assigning the latter to the incoming cell-edge flux of the adjacent down-stream ¢
(angular flux continuity across cell edges) and repeating the process. Upon completio
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the mesh sweep for all discrete ordinates the scalar flux is updated as described short
convergence is tested; this constitutes a single inner iteration.

For the purpose of the ensuing spectral analysis it is convenient to write the equation
the WDD in homogeneous form by subtracting the set of equations in two consecutive
ations, thus eliminating the fixed soursg, and replacing the dependent discrete variable
by their iterative residual counterparts. Accordingly, the most general WDD form of
discrete-ordinates approximation to the transport equation can be written in matrix for

TO vl =<l vl n=1. . Njj=1....3 4)

where, for exampley,, ; = 1}'“] - 1}',;]1 is the mesh-sweep residual in thién angular flux
averaged over cel, and so on. The superscript on the matrices in Eq. (4) denotes the lov
order WDD method; it follows directly from Egs. (1.a) and (2) that

Y
0 _

Tn,j = 1 1+01nAj 5 (Sa)
- 2
R

ﬁ,j = e (5.b)
O n,j

2

Closure of the iterative process represented in Eq. (4) by the indiexedl’ is accom-
plished in the SI scheme by setting

|+1—¢] anwn]v (6)

wherew, are the weights associated with the angular quadrature. Acceleration scheme
at replacing Eq. (6) with an alternative updating formula that results in faster converge
We start this section with a brief outline of the preconditioning method as it applies
neutral particle transport methods in general, and justify the diffusion coupling stencil
the preconditioner. Then we devise prescriptions for the preconditioner parameters fot
and thick computational cells separately, and following this we give formulas for mixing
preconditioner parameters across material discontinuities, and for the boundary condit
We close the present section by verifying the spectral analysis on a set of model and
model test problems, confirming the rapid convergence of the preconditioned iterati
even in the presence of sharp material discontinuities.

II.1. Preconditioning Neutral Particle Transport Methods

The standard mesh-sweep algorithm commonly used in solving the discretized inte
differential form of the discrete-ordinates approximation of the neutron transport equa
is focused on the discrete-variable angular flux as demonstrated by Eq. (4). Considerir
linearity of Eq. (4) and the quadrature formula, Eq. (6), then composing the mesh-sv
operator with the summation operator over angles can be viewed as a mapping of the ¢
flux accomplished via

¢" =Aos¢' +9), @)
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In Eq. (7),A is the iteration Jacobian matriy!" and¢' are vectors of the old and new
iterates of the cell-average scalar flux residual, respectively, each of l@nttdnumber of
computational cells in 1D slab geometpy;is a diagonal matrix whose nonzero elements
are thel macroscopic scattering cross sections; 8igla J-vector of the cell-average fixed
neutral particle source. MatriX represents the inverse of the discrete streaming operat
integrated (or summed) over all angular directions. A standard theorem in linear algebre
is that the convergence of the iterative scheme comprising Eq. (7) plus Eg. (6) is determ
by the spectral radius efA. It is a classical result in neutron transport numerical methoc
that these iterations converge slowly in highly scattering, optically thick systems [1-3].
In general, if the iterations, Eqgs. (7) and (6), converge to the kit then

Bp™® = AS, (8)
where
B=1I-Aogs, )

and| is the J-dimensional identity matrix. Had it been possible to construct and inve
(or factor) matrixB, the transport problem would have been immediately solvable witho
iterations [11, 12]. However, for most practical applications this proposition is inadeque
and asplitting of B to perform the iterations is inevitable. In particular, one can apply th
splitting

B=D-(D-B), (20)
with D selected to be easily invertible, then define the iterative scheme by
D¢'tl = (D — B)¢' + AS. (11)

In this caseD is called thepreconditioneyand Eq. (11) is the preconditioned system. Using
Egs. (7) and (9) in Eg. (11), one obtains

o't —¢' =D - ¢, (12)

whereg¢'’ is the mesh-sweep scalar flux; see Eq. (7). Notice thatig not singular then
convergence of the mesh-sweep flux, ig¢.,= ¢', implies convergence of the precondi-
tioned flux to the same solutiop!** = ¢'. Equation (12) is more convenient for practical
purposes than Eq. (11) because usually maticesdB are too large to construct and
store in memory, whilg'" is readily available. While there are many similarities betweel
the preconditioned system, Eq. (12), and standard DSA, as well as the IDSA, method
differs in one important respect: here the update is made relative to the previous precc
tioned iterate rather than the mesh-sweep flux. The spectral analyses conducted below
demonstrate the importance of this difference in the case of thick computational cells,
will require that it be rescinded in favor of the traditional update with respegt o the
case of thin cells.

Evidently the selection of the preconditiori@bears heavily on the stability and efficiency
of the preconditioned iterations represented by Egs. (7) and (12). On the one hand a sil
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choice ofD makes the updating step, Eq. (12), computationally inexpensive but may
sufficiently reduce the number of iterations. A good example of such a choice is

D=1, (13)

which reduces the preconditioned iterations to the Sl scheme, i.e., Egs. (7) and (6).
choice, Eq. (13), is none other than the classical Richardson iterative scheme, gent
known to require a number of iterations of ordEr to achieve convergence for a matrix
equation of orded [9, 10]. This estimate for the number of iterations turns out to be tc
conservative for S| when < 1 or the cell size decreases likJ~1); in such cases the
number of Sl iterations does not grow indefinitely but peaks or saturat@draseases,
respectively. Even more sophisticated choices of the preconditioner, for example, the J:
Method,D = Diag(B), the Gauss—Seidel Methdd,= Lower Triangle ofB, or Successive
over Relaxation (SOR)Y) = Lower Triangle ofB with weighted diagonal elements, etc.
which are easy teolve require a number of iterations that is of the order of some power
J for BandD J x J matrices.

At the other extreme, a more complicated choic®ahay result in a substantial reduc-
tion in the number of iterations independentXfbut end up being more costly to solve,
as in Eq. (12). Examples of such preconditioners are the FSM—DSA [3] and the IDSA
which possess iteration spectral radii that are bounded well below unity. Even thougt
tridiagonal diffusion-like equation (at least in slab geometry) that must be solved at e
iteration is more difficult than the mesh sweep in each discrete direction, usually it res
in a net reduction of execution time, especially in high-quadrature-order problems. -
beneficial effect of DSA and IDSA is projected to be even more pronounced in multi
mensional geometry, due to the normally large number of discrete angles employed,
though in this case the preconditioner becomes a sparse banded matrix that must be
iteratively itself. This conjecture is based on experience with the Partial Current Rebal:
acceleration option in the TORT code [13], which employs an SOR algorithm to solve
acceleration equation that has a diffusion coupling stencil. In large applications this ac
eration technique typically consumes about 5% of, while dramatically reducing, the t
CPU time.

In spite of the considerable latitude permitted in selecting the preconditioner, thus
multitude of DSA formalisms in the literature, it is desirable that it satisfy at least o
obvious criterion: that the slowest converging mode of the residual in the SI scheme kb
eigenmode of the preconditioner also, with the corresponding preconditioner eigenv
equal to one minus the corresponding eigenvalue of the Sl operator. If this is the case,
the exact solution of the preconditioned system represented by the updating step, Eg.
will result in the immediate elimination of this eigenmode, and because the iterations
linear it cannot be excited again. Intuitively, if the spectrum of the preconditioned sys
is continuous near the slowest converging mode, then neighboring eigenmodes will
suffer attenuation of their magnitudes, thereby converging rapidly.

The similarity between DSA methodology and tridiagonal preconditioners in slab ge
etry raises the obvious question of how to generalize it to multidiagonal precondition
and how much of th& matrix elements to exactly include . First we show how the
exact elements d@ can be constructed up to a few off-diagonal bands for the WDD syst:
of Eq. (4); for an algorithmic approach see Ref. [12].
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To compute the elements Afwe differentiate Eq. (7) with respect to the previous iterate
residual

1 o¢)

ooy 30l (14)

=

The diagonal elements & are computed by substituting Eqg. (4) into Eq. (14) witet to
j, then using the result in Eq. (9) to obtain

B —1—¢c EN w& (15)
M T e tom
n=1 ’ ’

Determining the first off-diagonal elements, eBj;,j+1, first requires solving Eq. (4) for
1/4?'1 For un > 0 we use the continuity of the angular flux (and consequently that of tt
iteration residual) across cell edges to equate the resulting expres&ip'mp Substituting
the latter into Eq. (4) af + 1 produces a relation betwee} ; ,; andg;, from which we
computedyry ;,1/9¢}, un > 0, while clearly this derivative vanishes far, < 0. This leads

to

N
En.j
B i=—Cjx1 ) w A ; (16)
LIt . ngl n(1+8n,j +an,j)(1+3n,jﬂ:1+an,j:ﬁ:1)

where we have assumed symmetry of the angular quadrature: for each discrete ord
n there is another discrete ordinaté such thatu, = —un, and wy = wp. In the same
way additional off-diagonal elements Bfcan be determined: for example, if we assume
homogeneous cell properties

N
0 en,j(enj +onj—1

Bllixz = CJnE_:lwn (A+enj+anj)d’ a7
and so on.

The increasing complexity of the elementsB®fas we go farther from the diagonal,
even if there exist efficient algorithms for solving such multidiagonal systems, raises
importantquestion, How many diagonal elements oughtto be included? The properties o
transport operator intuitively suggest that the off-diagonal elements diminish in magnitt
rapidly as they get farther from the diagonal, and hdecomes diagonally dominant with
increasing cell optical thickness. To quantify these propositions we expand the express
in Egs. (15)—(17) asymptotically in the reciprocal of the cell optical thickness for a moc
problem to obtain

N
c
B, =1-c+ — > walual + O(ca) ™2, (18)
n=1
g Ooay? (19
j,jil__gazw““’“"—i_ (ca)™,
n=1
RO ___°C EN: 34+ 0(ca)™ =0(a)® (20)
1E2 S T (a)s Wn|fenl (ca)™" = O(ca)™™,
n=1
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where we have suppressed the cell indices on the cell properties to indicate model (h
geneous material and uniform mesh) configuration. For highly scattering proldenis,
Egs. (18)—(20) imply that the diagonal and first off-diagonal elemenBsare of the same
order; hence they dominate all other elements as> co. Consequently, for highly scat-
tering problems with optically thick cells a tridiagonal preconditioner will very close
approximate the fulB matrix to the extent that the solution of the preconditioned systel
Eq. (12), will sufficiently approximate thexactsolution, thereby effecting immediate con-
vergence of the iterations. On the other hand, for highly absorbing probtem8, the
diagonal elements dominate even the first off-diagonal elements by one order of me
tude so that for optically thick problems a diagonal preconditioner (Jacobi method) ma
sufficient to achieve rapid convergence.

11.2. Adjacent-Cell Preconditioners for WDD

Having established the merit of tridiagonal, or adjacent-cell, preconditioners (the di
sion coupling stencil in slab geometry) in the diffusive regime, our next step is to detern
preconditioner parameters that lead to unconditional convergence and efficiency of the
conditioned iterations. The dominance of the tridiagonal elements in this regime intuiti
suggests that the AP elements take the form of Egs. (15), (16). However, this prescrij
violates the selection criterion discussed above because it is well known that the slo
converging modes in the diffusive regime are the flat modes [3], which do not necess.
satisfy an AP with Egs. (15), (16). Hence we seek better prescriptions for the AP elem
via a spectral analysis of the iterative procedure.

First, in analogy to the homogenization process applied to Eq. (4), Egs. (7)—(12) ca
written in homogeneous form by settiBgo zero and interpreting ajl variables as iteration
residuals. Then assuming model problem configuration we decompose all iteration resit
in the computed quantities into their Fourier modes via

¢} = @' explax;]. (21.a)
Ynj = Wy explxil, (21.b)
e = B explin(xj + sgun)a/2)]. (21.c)
) = 0y explia(x; — sgun)a/2)], (21.d)

¢) = o' explirx;]. (21.e)

where'’= /-1, sg is the signum function, is the Fourier variable, anxi is the position
of the center of mass of thgh cell. Substituting Egs. (21) into Eq. (4) yields [7]

@' = c[1 — (sirfr)x(n)]@', (22)

where we have assumed symmetry of the angular quadrature and defined

N

_ én(en + an)
X(r):;wnco§r+(sn+an)zsin2r’ (23)

andr =Aa/2.
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Using an arbitrary adjacent-cell preconditiorigrin Eq. (12) and decomposing into
Fourier modes yield the spectrum of the preconditioned iterations

(24)

er) = &)/l (r) = [1_ 1—c+c(sifr) () }

Dy + 2Dy — 4Dy sirr

whereDy, andD, are the diagonal and off-diagonal elements of the AP, respectively.
The inadequacy of the AP with exact tridiagonal elements, i.e., Egs. (15), (16), is n
evident. Taking the limit — 0 of Eqg. (24),

l-c

then settingDy =B? ; andD, =BY ;, yield
e(0) — 1, asc — 1 (25.b)

A thorough examination of Eq. (25.a) with arbitrary AP elements reveals a necessary ¢
dition for the stability of the preconditioned iterationsas- 1, namely

Do = %{%C - Dd], be (0,2 (26)
This stability condition withb =1 is reminiscent of the cell-centered discretization of the
neutron diffusion operator whei®, is set to the square of the ratio of the diffusion length tc
the cell size; it results in immediate removal of the 0 eigenmode, the slowest converging
S| mode. For these two reasons, in the remainder of this paper, we refer to Eq. (26) \
b=1, in particular, as thstability condition Note that in the worst case, i.e., the trajectory
c=1, the value ofb is inconsequential to the convergence of the 0 eigenmode. In
general, the eigenvalue surfaeg; ¢) given by Egs. (24) and (26) is multivalued at the
pointr =0, c= 1, with the limit of e depending on the trajectory of approach to this point
The limit value ofeis (1— b) for all trajectories except=1.

I1.2.a. Thick-Cell AP for WDD

In the context of model problem configurations there are only two AP parameters to
determinedDy and D, In view of the stability condition, Eq. (26), we are free to choose
only one more condition for the spectrum to satisfy: we require the limit of Eq. (24)
vanish asr — 0. The O(r% term vanishes by virtue of Eq. (26) with=1; the O(r?)
terms, which are the most significant terms when1, provide an expression f@, which
when combined with Eq. (26) yields

N
C
Dg = E Z Wnén(&n + an), (27)

n=1

essentially eliminating the slowest-converging, flat, eigenmode immediately forall
The preconditioner defined by Egs. (26), (27) is the Thick-Cell AP (KAP) [14]. The spectru
for KAP is depicted in Fig. 1 for the ONIM with a§, angular quadrature,= 1, and various
cell thicknesses. These spectra illustrate the superb efficiency of KAP for cells thicker tl
~5 mfp, a property shared with IDSA [7], but not the FSM—DSA [3]. Nevertheless, KAP
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FIG. 1. Spectrum of KAP for the ONIM witts, angular quadrature ard= 1.

efficiency, as measured by the smallness of the spectral radius, diminishes with cell
and for very thin cells loss of stability creeps in.

While the KAP and NAP presented in this and the next sections apply to WDD in gent
only results for the ONIM,S;, c=1 case are reported in the remainder of this sectio
The spectra foc < 1 are generally smaller than those foe 1, and for allc are largely
insensitive to the order of the angular quadrature. The spectra of the AP accelerated
method are qualitatively similar to those of the ONIM except that the spectral radius c
not diminish as rapidly with cell size. Consistent with Reed’s results [1] and the ID:
parametric studies reported earlier [7] the AP accelerated DD method becomes uns
for cells thicker than 1.6 and 1.1 mfp for KAP and NAP, respectively. The only conditiot
stability of the AP for DD is not a disappointing result given the general wisdom tt
this discretization of the transport operator often becomes inaccurate for cells thicker
~1 mfp. Similarly, the Step approximation accurately represents the relationship betv
the edge and cell-average fluxes only for thick cells, i.e., thicker than a few mfp’s. -
ONIM spans the entire range of cell sizes because its spatial weights, Eqg. (3.c), appt
the correct limit, DD or Step, as cell thickness approachesd arespectively.

11.2.b. Thin-Cell AP for WDD

The original purpose of the preconditioning technique is to provide an iterative solu
alternative to the exact solution algorithm; compare Egs. (8) and (11). In this work,
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introducing the mesh-sweep flux into the iterative scheme, Eq. (12), we essentially emj
this technique as an accelerator to the source iterations represented by the mesh sw
This is the reason for the previous iterate flux appearing on the left hand side of Eq. (-
in contrast to the mesh-sweep flux normally used in the corresponding updating equa
in standard DSA and IDSA methods. By carefully examining the behavior of the iterati
eigenvalue in Eq. (24) as the cell optical thickness approaches zero, we find that, for perfe
scattering problemg,=1,

x()—sin?r, O0<r <n/2 asca— 0, (28)

hence

er) = [1 } — 1, asca — 0, (29)

2Dy sir?r

where we used Egs. (26) and (27). This behavior is verified by the almost flat eigenva
e(r)~1,r far from 0, of this method for thin cellg;a < 0.1, displayed in Fig. 1, with the
small eigenvalue region neak= 0 resulting from the imposed condition for that mode; set
Eq. (27).

An easy fix to this behavior is to modify the updating formula, Eq. (12), to

¢t —¢" =D 7led" — ¢ (30)
which results in error mode decay governed by

1—c+c(sirfr)x(r)
1—c—2(1—c— Dy)sirr

o) =c|1— x(r)sirfr — @ (r). (31)
Again we select théy parameter so as to effect a zero eigenvalue-at0, Eq. (27), to
obtain the Thin-cell AP (NAP), whose spectra for the ONIM with@rangular quadrature,
c=1, and various cell thicknesses are plotted in Fig. 2. These spectra show the high
ciency of this preconditioner for all cell thicknesses; nevertheless, comparison with Fic
reveals that for thick cells, KAP provides superior convergence rates.

It is possible to write the NAP formula, Eq. (30), in the form of KAP, Eq. (12), tha
resembles more closely standard preconditioned iterations where an intermediate ite
here the mesh sweep flux, does not exist. This can be accomplished by subtshtriimy
both sides of Eq. (30) and rearranging to obtain,

Pt —¢' =1 +D o) — o).

This amounts to a KAP whose preconditioner is the full magrix D~*c)~1. This result
might explain why KAP, with only adjacent-cell coupling, does not accelerate probler
with thin cells too well. In such cases the coupling among the cells that are not adjacer
too strong to ignore, and only by accounting for this coupling via a full preconditioner lik
NAP, as well as standard DSA, can effective acceleration be achieved.

11.2.c. Preconditioners for Non-model ONIM Problems

For the benefit of the spectral analyses performed above, all discussions so far |
assumed a model problem configuration wherein uniform properties, e.g., size and mat
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FIG. 2. Spectrum of NAP for the ONIM witt§, angular quadrature ar= 1.

composition, are assigned to an infinite, or periodic, row of computational cells. In 1
applications, solved using production codes, cell-property discontinuities are common,
boundary conditions expressing the finite nature of the problem are standard. Therefo
order to verify the spectral analysis, and establish the utility of the new method in sol
real problems, we must provide formulas for the boundary conditions, and for mix
preconditioning methodologies, not only within the same thin/thick cell regime but a
across.

The mixing formula must accomplish two functions: compute the effective precon
tioner parameters when two adjacent cells have different properties, and adjust the upc
formula according to the size of the cell in question. The second function is easily acc
plished by testing the cell size against a cut off vaby@ a Fortran program, and using the
mesh-sweep (previous iterate of the) scalar flux for updating, when the cell size is sm
(larger) thans, respectively. The first function is accomplished in the traditional way
mixing in diffusion theory, namely reciprocal averaging [15] of ttifusion coefficient
For example, the equation for cgllbecomes

—Dg I (flaa— )+ DI (fj = fip+ A —cpfi =y (4] —¢}). (32.)

; 20 +18j+1
DIl = 1= , (32.b)
® " 0j218j41/Do j+1+ 0jaj /Do j
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FIG. 3. Spectral radius for KAP (dashed curve) and NAP (solid curve) as a functiea fafr the ONIM with
S, angular quadrature ard= 1.

whereD, ; is evaluated from Egs. (26) and (27) using the local properties of cefid

Cj, oja,j <34,
1, ojq,; > 4.

Once the system of equations represented by Eq. (32.a) is solvég e scalar flux is
updated using

141 _

J

¢Ij/+fja ojaj <6,
(34)

d)lj—l—fj, 0jQ; > 4.

To determine the value of the cutoff cell sifewe note from comparing Figs. 1 and 2
that for the intermediate cell thickness where the cutoff size occuts;d < 5, the largest
eigenvalue is located at= /2. Thus we plot the eigenvalue at that point vs cell thicknes
in this range for KAP and NAP in Fig. 3. We conclude from Fig. 3 that1.8 for the ONIM
with S, angular quadrature aral= 1, and use this value for other cases assuming it is ne
sensitive to the quadrature order or the scattering ratio.

The system of equations, Egs. (32.a), must be augmented with appropriate expres:
for the boundary conditions before it can be solved. For example, for vacuum bound
conditions we use Larsen'’s recipe [3]. More specifically, a fictitious cell is appended
the left (right) side of the problem external boundaries with nuclear and physical proper
identical to those of cell 1.J) and with cell-average flux residu] f, (T'; f;), respectively
[7]. The proportionality factor§'; are computed via Larsen’s prescription that the edge flu
residual is linear in the angular variahlg to obtain

_ Doyjdjaj/)/jﬂ -1
Dojoja;/viB +1’

T j=1o0rJ, (35.a)

where we have defined

N/2

B=> wnitn. (35.h)
n=1
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Using these expressions in a vacuum boundary condition on the left external edge yie
—Dg*f2+ [Doa( =T + DI fi+ (L - 0) f1 = ya (¢} — ¢1), (36)

with an analogous expression for the right external boundary.

11.3. Numerical Verification of ONIM Theoretical Results

Inorderto verify the assumptions and hypotheses made in performing the spectral an:
of the new acceleration scheme, as well as the mixing formulas and boundary cond
expressions for non-model problems, we implemented our new method, in addition tc
and FSM-DSA, in the slab geometry WDD computer code AP1D. We use thiscode to s
the test problem shown in Fig. 4, which is made up of two materials with different opti
thicknesses.

The scattering ratio is set to 1 in both materials as this represents the worst case
as convergence rate is concerned, and the discontinuities in cell properties, namely
and total cross section, are lumped into the dimensionless paranget®e independently
vary the optical thicknesses of the two materialss; ando,a,, between 10° and 10 to
cover a wide range of possible material/mesh discontinuities, and we observe the nu
of iterations required to achieve 19relative pointwise convergence using the standard S
the FSM-DSA, and the new preconditioned iterations. Table | contains these results; cl
acceleration of some sort is necessary for very thick cells, as is well known. Table | sh
the very high efficiency of the preconditioned iterations compared to that of the Sl sche
and its immunity to severe cell-property discontinuities. The results for the new metl
along the diagonalia; = opay, represents the uniform cell-property case, and serves
a verification of the spectral analyses presented above. While the FSM-DSA perfc
equally well for thin problems, the preconditioned iterations converge faster when tt
regions are introduced into the problem. Indeed for very thick problems our new met
converges immediately, as predicted by the spectral analysis.

cell
mdex |1 j2)3j4e]s]el7|8 ]9 |w]
material I 2 | 1 I 2
index
Problem Parameters: Vacuum Boundary Conditions
S6 Angular Quadrature
e=10"
Nuclear Properties: § =1 s, =0
c1=1 c2=l
G, a, € [.00001,10] q, a, € [.00001,10)

FIG. 4. Configuration for ONIM test problem.
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TABLE |
Number of Iterations? Required to Achieve 104 Relative Pointwise Convergence for the Test
Problem Using ONIM with AP (Top), FSM-DSA (Middle), and SI° (Bottom)

018y

028 10°5 0.01 0.1 0.5 1 5 10
10°5 1 2 4 4 2 2 1
1 2 4 5 4 4 4
2 3 6 17 29 120 215
0.01 3 3 4 4 3 3 3
3 3 4 5 4 4 4
4 5 8 18 30 124 222
0.1 5 5 5 5 4 4 4
5 5 5 5 5 5 5
15 15 18 29 44 159 279
0.5 4 4 4 4 4 4
5 5 5 5 5 5 5
67 67 71 88 110 288 477
1 3 3 4 4 3 3 3
4 4 4 4 4 4 4
149 149 154 175 203 422 659
5 2 2 3 3 2 2 1
4 4 4 4 4 3 3
704 704 709 729 754 956 1199
10 1 2 3 3 2 2 1
4 4 4 4 4 3 3
1193 1194 1197 1213 1233 1396 1595

2 |teration counter initialized at 0.
b Potentially false convergence in cases requring many iterations.

Ill. ACCELERATION OF THE 1NIM

Early attempts at extending the IDSA formalism to the linear NIM (1NIM) were base
on the assumption that the spectral radius depends strongly on the intramoment cour
but weakly on the intermoment coupling. Had this been the case, it would have allow
acceleration of the zeroth and first spatial moments of the flux to be performed separe
with uncoupled standard diffusion operators. This assumption did not materialize, hc
ever, and it became necessary to explore preconditioners that include in the preconditi
operator terms that couple the spatial moments of the scalar flux. The resulting AP still
sesses a cell-centered diffusion stencil but in the block sense, implying a high probab
that standard iterative techniques will be adequate in this case, but that existing diffus
codes cannot be employed as acceleration modules without significant modifications.
worth noting at this point that the edge-centered FSM—-DSA applied in slab geometry to
Linear Discontinuous method (which is comparable to 1NIM) results in a single diffusic
equation that must be solved at every acceleration stage for the cell-edge corrections
are then applied to the cell moments of the flux [3]. Clearly this is an advantage of the FS
DSA over AP in slab geometry that we conjecture will not stand in multidimensional cas
where multiple coupled cell-centered diffusion equations could result from FSM—-DS
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and where there are fewer cell-moment discrete variables than cell-edge discrete vari
Another advantage that edge-centered DSA for linear methods in slab geometry poss
is its robustness in the presence of sharp material discontinuities; however, this adval
does not carry over to multidimensional situations where the performance of both e
and cell-centered acceleration techniques deteriorates in the presence of sharp mi
discontinuities.

We start this section with a spectral analysis of the uncoupled diffusion operator appre
to show its inadequacy regardless of the diffusion parameters employed. We explain
behavior by an asymptotic analysis to show that the elements of the full transport ope
that couple the zero and first spatial moments are of the same order as the diagonal ele
in the diffusive regime, and thus cannot be neglected. Along the same lines presente
the ONIM in Section I, we develop KAP and NAP for the 1NIM, which are extreme
efficient for corresponding cell thicknesses and describe mixing formulas and boun
conditions for non-model problems. Due to the complexity of the INIM only the NAP w
implemented in a computer code because it is highly efficient for all cell sizes. We cl
this section with numerical tests to verify the predicted spectral properties for NAP, and
its robustness in the presence of sharp material and mesh discontinuities.

l1l.1. Inadequacy of Uncoupled Preconditioners for INIM

The 1NIM equations [8] in slab geometry can be written in tensor form,
' ' ~T i1 T .
TE o vl =8t (ol e vl n=1. Nfj=1....3 (37
Wherexp,f"}/ and¢>}<’I are the linear spatial moments of thih angular flux residual and the

scalar flux residual over thgth computational cell, respectively. The superscript on tf
matrices in Eq. (37) denotes the 1NIM, and these matrices are given by

1 0 eni/2
Th = | —Sdun)en 1 sUun)en,j/2 | (38)
Qan,j 3 SJ(in) —(Oln,j + 1)/2

¢ O &n,j/2
Sj=1|0 ¢ —sUuneni/2|, (39)
0 0 (anj—1/2

where for the 1NIM, the spatial weights are given by [8]
an'j = [COth(l/En’]) - Sn’j]_l — 38[’1,] . (40)

All other terms are as defined in Section Il. The equations represented by the firstand se
rows of Eq. (37) stand for the balance condition on the zeroth and first spatial momen
the angular flux residual, respectively, while the third row stands for the weighted differe
relation, where the incoming angular flux residual has been moved to the RHS asin Eq

Applying two uncouplediiffusivepreconditioners to the zeroth and first spatial momen
of the scalar flux residuals governed by the square of the dimensionless diffusion ler
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A", yields the system
A (=20 + )+ Q=0 f) =c(o)" — o). (41)
The preconditioning stage is then followed by the updating formula

o't =gl + £, v =nullx. (42)
In EqQ. (41) we assume a model problem configuration, thus suppressing the cell inde
the scattering ratio and". The attractiveness (simplicity) of this method is evident frorn
Eq. (41); the system of equations that must be solved in the acceleration stage is decol
into two sets, each of which is aregular, cell-centered discretization of the diffusion equati
that can be solved using existing efficient algorithms and codes. The question, howeve
whether there exists a choiceaf that makes the iterative scheme represented by Egs. (3
(41), and (42) unconditionally stable and rapidly convergent.
We augment the Fourier decomposition in Eqgs. (21) with

¢ = o' explinx;], (43.2)
ur = X expliax;], (43.b)
¢F" = o' explinxj], (43.0)

f = FYexplax;], v =nullx, (43.d)

and substitute into Egs. (37), (41), and (42). After some manipulation of the decompo
equations we obtain the Fourier representation of the mapping of the error modes by
mesh-sweep process

3" =cx*(nN®, (44)

where we defined the vectd® =[®k, ®*K]T k=I, orl’, and

‘) = 1—&(r)sirfr —3e5(r) sin(2r) )
= Ler(rysin2r) 11— 35(r) coSr — 3&(r) sirfr |
. en(an + 3en)[1 + enlan + 3en)]
&(r) = ;wn (atn + 38n)2 codr + [1 T enlan + 38n)]25in2r s (46.a)
N
_ en(otn + 3en)
EZ(r) = nX:; Wn (an + 38n)2 CO§r 4 [1 + Sn(an + 38n)]25in2r ) (46b)
N 2
enll + en(on + 3en)]
= n —, 46.
=0 ; " (e + 362 COF T + [1 + enlen + 3o 2SI (46.0)

and where we have assumed symmetry of the angular quadrature. Equation (44) is the 1
analogue of Eq. (22), and the superscriptydhindicates that it is the INIM mapping that
governs the evolution of the unaccelerated iterates’ eigenmodes.
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Fourier analysis of the diffusion equations, Eq. (41), produces an expression which v
substituted in the Fourier decomposition of Eq. (42) yields the mapping of the error mc
for the preconditioned system

@,H:C{ ‘“ [1/(1—0+4Asin2r) 1/(1—c+ 4AsirPr)

x _ |
1/(1 —c+4AXsirfr) 1/(1—c+4A% sinzr)] [ex |]}<I> - 47

Attenuation of the accelerated residual modes is determined by the spectrum of the mat
the RHS of Eq. (47). Itis straightforward to show thatdes 1, one of the eigenvalues of this
matrix diverges as—? whenr — 0 regardless oA”, thereby establishing the inadequacy
of this iterative method.

[11.2. Adjacent-Cell Preconditioners for INIM

In order to understand the reason for the inadequacy of preconditioners that lack
coupling between the zeroth and first spatial moments of the flux we compute the e
multidiagonal preconditioneB matrix, for the 1NIM (in this case lalockmatrix). Through
an asymptotic analysis analogous to that conducted in Section II.1 we can then deter
the relative importance of this coupling in the limit of diffusive regimes. Since the proced
is identical to the one detailed in Section Il.1 we skip to the final result,

: 1+ (an+ 3¢ 0
B!, =1-cY_ dl (n o 3en) ., (48.3)
n:ll+(8n+1)(0(n+38n) 0 1+ an(en + 1)
N 2
w enlan + 3en)®  £3en(on + 3en)
Bl =2 i 2 , (48.b)
=1 [T+ (en+ D(an + 3en)] Fen(on + 3en) —3e,
Bl  — CEN: wall + (en — D) (an + 3en)] | nlom + 3en)?  £3en(on + 3en)
J’Jiz n=1 [l + (En + 1)(an + 38“)]3 :an(an + 3€n) _38n ?
(48.c)

where the superscript @ denotes the 1NIM. In Egs. (48) we have assumed uniform c
properties by suppressing the cell index on the preconditioner parameters, and we ass
symmetry of the angular quadrature.

Itis clear from Egs. (48) that while the diagonal block exactly decouples the zero and
moments of the scalar flux, the off-diagonal blocks do not. Indeed, an asymptotic ana
of the exact preconditioner blocks in the limit of thick computational cells yields

N
1 c 10 2
Bj,j =1-0ol+ oa nE:l Wn|in] |:0 3:| + O(ca)™7, (49.9)
B, ——_° §N Wl tnl 1 +3 O(ca)~2 (49.b)
il T T o0a £ niMn +1 -3 , .
Bl . —__° §N: wiEl L 3 4 oway (49.0)
%2 = T Ga)3 2 Wnltnl™1 g 5 . .

Equations (49) agree with the ONIM result that wheen 1 the first off-diagonal blocks are
of the same order as the diagonal block, and thus cannot be ignored even for very



378 Y. Y. AZMY

computational cells; blocks farther from the diagonal vanish fasteiaas co. The most
important feature of the exact preconditioner that is illustrated by Eqgs. (49) is the fact t
the terms coupling the zeroth and first spatial moments of the scalar flux in the off-diago
blocks areO(ca)~!, the same order as the diagnoal block and the other elements of 1
off-diagonal block. This explains the poor spectral properties of preconditioners that ign
this coupling.

I11.2.a. Thick-Cell AP for 1NIM

To proceed with the derivation of KAP for INIM we introduce a Fourier decompositio
ofthe generic block-AP to obtain the mapping of the error modes by the accelerated sche

't =l + D Yy - D)@', (50.a)

where the Fourier-decomposed generic KAP is
D(r) = [Do O} Z{ADO’O C(?S(ZI’) tDg.1 SIN(2r) 7 (50.b)
0 D tDigsin(2r) D11cog2r)
and x* is given by Eq. (45). Note that in Eq. (50.a) the KAP updating formula, i.e., wit
respect to théth iterate, is used.

Since the details of the derivations of KAP and NAP are the same, and because
the NAP is implemented and tested for 1NIM, we briefly outline the derivation of KAl
and elaborate on the analogous details in the following section. Removing the singule
in the spectrum of KAP at the origin in Fourier space results in a stability condition th
relates the elements of the diagonal and off-diagonal block3. dEven then, there are
sufficient degrees of freedom to permit imposing two conditions on the spectrum, and
choose these to be that the KAP eigenvalues vanish in therlisi0, and ar =z /2, an
idea reminiscent of the approach introduced in Ref. [5] for the DD discretization of tl
transport equation. This procedure leads to the following expressions for the KAP eleme
appearing in Eq. (50.b),

C&1(/2)

Do=1-c+ 5 (51.a)

Dy =1t S10) +Es(/2)] (51.b)

Doo = —251(77/2), (51.c)

Do1 = 374(:52(0), (51.d)
B . B )

0. et 3C€2(0)][51§g)§ - Os)1<n/2>] 0 -

D1 = SLa0) — /2] (511

The spectrum of the 1INIMg(r), comprises two eigenvalues per Fourier mod8&ince
the rate of convergence is dictated by the eigenvalue of the larger magnitude over the Fo
space, we are particularly interested in |[giipwhere the sup is over the two eigenvalues
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FIG.5. Spectra of KAP for the 1NIM witt§, angular quadrature ard= 1.

atr; we loosely refer to this aspectrumin the following discussion. Spectra for the KAP
iterative method are shown in Fig. 5 for the 1NIM wif} angular quadrature,=1, and
various cell optical thicknesses. In these plots we assign a negative valudepiftie
eigenvalues are complex. Note the complex spectra faralD, = /2] and for all values
of oa a depicted in Fig. 5. The spectra shown in Fig. 5 resemble their ONIM counterp
depicted in Fig. 1 with two significant differencs. First, the high frequency eigenmod
r = /2, converge immediately here as required by the condition imposed in the deriva
of the KAP elements. Second, the spectral radius of the 1INIM KAP is generally smaller t
that of the ONIM KAP, and for very thick cellg;a > 10, it is almost an order of magnitude
smaller. Nevertheless, this method still lacks the necessary efficiency for computati
cells of thin and intermediate thickness, thus motivating derivation of a NAP for 1NIM
the next section.

I11.2.b. Thin-Cell AP for 1INIM

The development of thin-cell AP, NAP, for the 1NIM follows essentially the same patte
established by the ONIM development as described in Section 11.2.b. Specifically, we
the updating formula to make the update with respect to the mesh-sweep scalar flux inste
the previous iterate. Through a Fourier decomposition the error mode mapping is desc
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by an expression similar to Eq. (50.a) but with the first identity matriappearing on the
RHS replaced bgx*, to obtain

N(r) = c[x*(r) + D2 {x* ) — 1}, (52)

which maps the eigenmodes of the NAP-accelerated residual iterates. If one takes the
of N asr — 0 and requires the diagonal elements to approach zero while the off-diago
elements remain bounded, a sufficient condition for the flat mode eigenvalue to vanish yi
the formulas

Doo = #, (53.a)
Dio = m;Tf“ {1 —¢— Do+ %51(0)] - 352(0), (53.b)
Dis— % {1_31&(0) —c- Dl}. (53.0)

Similar to the KAP case, here also we have enough preconditioner parameters to rec
the iteration eigenvalues to vanishrat /2, to obtain the conditions

B 1 &(n/2)
Dop=1-c+ Em, (543)
1 1 1 1
D; = 2Dy — == —c. (54b
1 M T ) T 2|1-36md T 1-350)] © S0

Equations (54) can be substituted in Egs. (53) to obtain explicit expressions for all the N
parameters if desired.

Spectra of the INIM NAP withg, angular quadratures=1, and various cell optical
thicknesses are plotted in Fig. 6, where negative values ¢éjsoply complex eigenvalues
atagiverr. The discontinuities in the spectra in Fig. 6 with = 0.1 and 0.5 indicate points
oftransition from real to complex spectra. These spectra exhibit excellent spectral proper
and bear a strong resemblance to their ONIM counterparts. While the NAP provides
unconditionally stable, rapidly convergent iterative scheme for all cell thicknesses, itis |
efficient than the KAP for computational cells thicker thas mfp, where KAP converges
extraordinarily fast. Nevertheless, the complexity of the mixing process in this higher or
method precludes combining KAP and NAP into a conditional preconditioner as has b
accomplished for the ONIM; hence only the NAP is implemented and tested as descri
in Section 111.3.

I11.2.c. Preconditioners for Non-model 1NIM Problems

In order to determine the mixing formula for the 1INIM NAP we extended the standa
approach usedto derive the reciprocal averaging formulato include the linear spatial mor
of the flux also [15]. This results in reciprocal averaging formulas for each of the eleme
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FIG. 6. Spectra of NAP for the 1NIM witl§, angular quadrature ard= 1.
of the AP generally along the same lines as Eq. (32.a),
+] +] =] =
_ Doo DO,l l fira— fj ] i Doo _DO,l fj — fi—ll
+] +j X _ fX =i =] X _ fX
Dl,O D1,1 fi+l fl - Dl,O D1,1 fJ fJ—l
I |
1-g; 0 fj ¢j - ¢j
1o by —200 | | x| TG g g | (55)
1j —2D11j i ¢ — o)

where ij@ are defined in analogy to Eg. (32.b). Since only NAP is considered here
updating formula is with respect to the mesh-sweep #x,, v = null, x.

The boundary conditions for the 1INIM AP are also derived in analogy to the ONIM c:
wherein the zeroth and first spatial moments of the scalar flux in the fictitious cells to
left and right boundaries of the problem are expressedl dg andTI'; fj, v=null, X,
respectively, wher&;, j =1 or J, are given by Eq. (35.a).

111.3. Numerical Verification of 1INIM Theoretical Results

In order to test the validity of the assumptions and hypotheses made in perforn
the spectral analysis presented above, and to demonstrate the efficiency of the deve
preconditioners we upgraded the test code AP1D described in Section 11.3 to include
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TABLE Il
Number of Iterations? Required to Achieve 104 Relative Pointwise Convergence for the Test
Problem Using 1NIM with AP (Top), and SI® (Bottom)

018y

0,8 10 0.01 0.1 0.5 1 5 10
10°° 2 3 4 5 6 5 5
2 3 6 17 32 215 558
0.01 3 4 4 5 5 100 100
4 5 8 18 33 218 562
0.1 6 6 6 7 8 24 40
15 15 18 29 45 242 597
0.5 6 6 7 6 6 12 19
69 70 74 91 115 355 746
1 7 6 8 6 5 7 11
170 171 176 201 232 524 936
5 6 100 23 13 8 4 4
1682 1683 1693 1739 1797 2256 2804
10 5 100 40 21 12 5 4
4040 4042 4052 4098 4156 4610 5133

a |teration counter initialized at 0.

b Potentially false convergence in cases requring many iterations.
¢ Did not converge in 100 iterations.

INIM. To verify the spectral analysis, mixing formula, and boundary conditions for tk
INIM NAP we solved the same suite of test problems shown in Fig. 4 with the ne
acceleration method and Sl. Itis important to note that unlike many implementations of h
order transport methods, the convergence criterion is applied here to both spatial monr
of the scalar flux, not just the average flux. The results of these numerical experiments
shown in Table Il. The number of iterations for AP along the diagonaldiey, = o,ay, is

in excellent agreement with the spectral analysis graphically depicted in Fig. 6. Howe
some of the cases with sharp material discontinuities consume more iterations than ce
justified by the analysis, and a few do not converge at all. These peculiar cases migt
fact be a consequence of a larger pattern observed in multidimensional geometries al
present under investigation [16]. Namely, there is strong evidence that there do not e
unconditionally stable and robust preconditioners with a cell-centered diffusion coupli
stencil for problems with sharp mesh and material discontinuities. In any case, it is evid
from the results shown in Table Il that AP converges over a large region in parameter sp
and that when it does it saves many inner iterations required for convergence by Sl.

IV. CONCLUSION

We applied the preconditioning technique to neutral particle transport methods with
purpose of accelerating iterative convergence. Preconditioning provides a general frz
work for studying the spectral properties of awide variety of acceleration techniques, like
standard Jacobi, SOR, etc., methods of numerical analysis, linear DSA methods studie
tensively in the nuclear field, or novel non-traditional operators. Indeed, unlike DSA, whe
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the diffusion operator naturally arises from taking tReapproximation of the discrete-
variable transport equation, when we focus on preconditioners that operate on the s
moments of the scalar flux veeerivethe discretized diffusion equation as a special case o
general necessary condition for stability. Such preconditioners couple adjacent cells, t
the term Adjacent-Cell Preconditioners (AP), in a cell-centered diffusion coupling stel
that is easy and efficient to solve by most available diffusion codes. In addition, bec:
AP is cell-centered it involves fewer discrete variables when extended to multidimensi
geometry or higher order spatial approximations than the corresponding edge-center
point-centered methods.

In this paper we derived AP in slab geometry for a class of lowest order methods che
terized by the WDD formula and for the first-order Nodal method 1NIM. Spectral analysi
the AP-accelerated methods on model problem configurations illustrates its unconditi
stability and effectiveness in reducing the number of iterations required for converge
Indeed, the spectral radius vanishes in the limit of very thick computational cells, the ¢
most needing of acceleration, implying immediate convergence. Testing of our new ti
nique in a suite of test problems designed to cover a wide range in parameter space
including material discontinuity, demonstrates its efficiency in slab geometry for all WL
cases and most 1NIM cases.

The focus in this paper has been on the efficiency of the acceleration method, not o
accuracy of the solution obtained; since AP converges to the same solution as the un:
erated scheme (see Eg. (12)), the assumption is that the user has selected the bestr
balance accuracy with computational efficiency. The reader is reminded that because \
methods, including ONIM, do not possess the thick diffusion limit of the transport eq
tion their local accuracy deteriorates significantly for thick cells where AP has the grez
advantage. In contrast, INIM preserves the thick diffusion limit behavior of the transy
equation; hence it can provide highly accurate solutions at increasing computational
ciency with increasing cell size.

We have already extended the AP approach to multidimensional Cartesian geometr
implemented the resulting method in the three dimensional production transport code T
[17]. The multidimensional AP has essentially the same excellent spectral propertie:
model problems as its slab geometry counterpart. However, attempts to achieve unc
tional robustness in problems with sharp mesh and material discontinuities have failed
and recently have been proven to be mathematically impossible to achieve [16]. We co
ture that the lack of unconditional stability of the AP for 1NIM with material discontinuit
is related to this fact. It would be interesting to explore nontraditional preconditioner:
pursuit of this goal.
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